
nationalgrid

Groundwater Sampling, NAPL
Monitoring/Recovery and Groundwater
Treatment Performance Report for the
Third Quarter of 2013 (July - September 2013)
for the Hempstead Intersection Street
Former Manufactured Gas Plant Site
Villages of Hempstead & Garden City
Nassau County, New York

Prepared for:

National Grid 175 East Old Country Road Hicksville, New York 11801

Prepared by:

URS Corporation - New York 77 Goodell Street Buffalo, New York 14203

URS

March 2014

GROUNDWATER SAMPLING, NAPL MONITORING/RECOVERY, AND GROUNDWATER TREATMENT PERFORMANCE REPORT FOR THE THIRD QUARTER OF 2013 (JULY - SEPTEMBER)

HEMPSTEAD INTERSECTION STREET FORMER MANUFACTURED GAS PLANT SITE VILLAGES OF HEMPSTEAD AND GARDEN CITY NASSAU COUNTY, NEW YORK 11550

Prepared for:

National Grid 175 East Old Country Rd. Hicksville, NY 11801

Prepared by:

URS Corporation 77 Goodell Street Buffalo, New York 14203

March 2014

TABLE OF CONTENTS

		Pag	ge No.
EXECU	JTIVE S	SUMMARY	E-1
1.0	INTRO	DUCTION	1-1
2.0	FIELD	ACTIVITIES	2-1
	2.1	Groundwater Depth and NAPL Thickness Measurements	2-1
	2.2	NAPL Recovery	
	2.3	Groundwater Sampling	
	2.4	Groundwater Treatment System Operation	
3.0	RESUI	_TS	3-3
	3.1	Dissolved-Phase Plume.	3-3
	3.2	Potentiometric Heads and NAPL Thickness	
	3.3	Groundwater Analytical Results	3-5
	3.4	NAPL Recovery Volumes	3-6
	3.5	Groundwater Treatment System Performance	3-6
4.0	SUMM	[ARY	4-8
Referer	nces		R-1
		TABLES (Following Text)	
Table 1		Summary Field Activities: Water Level Measurements, NAPL Thickness Measurements, NAPL Recovery, and Water Quality Sampling, Third Quart 2013	er
Table 2		Groundwater and NAPL Measurements, Third Quarter 2013	
Table 3		NAPL Recovery, Third Quarter 2013	
Table 4		Dissolved-Phase Concentrations of Total BTEX and Total PAH Compound	s,
		Third Quarter 2013	
Table 5		Groundwater Treatment Performance Monitoring, Third Quarter 2013	

2013 3rd QUARTER GROUNDWATER SAMPLING, NAPL MONITORING, AND GROUNDWATER TREATMENT PERFORMANCE REPORT

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

FIGURES

(Following Tables)

Figure 1	Location Map
Figure 2	Site Map – September 2013
Figure 3	Soil Remediation and Groundwater Treatment Locations
Figure 4	Extent of Dissolved-Phase Plume and Groundwater Analytical Results – September 2013
Figure 5	Potentiometric Surface Map for Shallow Groundwater, September 16, 2013
Figure 6	Potentiometric Surface Map for Intermediate Groundwater, September 16, 2013
Figure 7	Potentiometric Surface Map for Deep Groundwater, September 16, 2013
Figure 8	Total Dissolved-Phase BTEX/ PAH Concentrations and Free Product Thickness, Third Quarter 2013

APPENDICES

(Following Figures)

Appendix A Data Usability Summary Report

Appendix B Oxygen System Operation & Maintenance Measurements

ACRONYMS AND ABBREVIATIONS

amsl above mean sea level

BTEX benzene, toluene, ethylbenzene, xylenes

DNAPL dense non-aqueous phase liquid

DO dissolved oxygen

DUSR data usability summary report

F&N Fenley & Nicol Environmental, Inc.

ft foot (feet) ft/ft feet per feet

HIMW Hempstead Intersection (Street) Monitoring Well

ISS In Situ Solidification

LNAPL light non-aqueous phase liquid

MGP manufactured gas plant $\mu g/L$ micrograms per liter MP monitoring points

NAPL non-aqueous phase liquid

NYSDEC New York State Department of Environmental Conservation

ORP oxidation-reduction potential

PAHs polycyclic aromatic hydrocarbons

PID photo ionization detector

QC quality control
URS URS Corporation

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

This report provides a summary of field activities, analytical results, and data interpretations associated with groundwater sampling, gauging and recovery of non-aqueous phase liquid (NAPL), and with the groundwater treatment systems at the Hempstead Intersection Street Former Manufactured Gas Plant (MGP) site during the Third Quarter (July, August, and September) 2013.

Groundwater monitoring and sampling were conducted on September 16 – September 26, 2013. This included measuring the depth to groundwater and NAPL thickness in approximately 41 wells. Groundwater samples were collected from 25 wells and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs).

NAPL monitoring and recovery was conducted on October 7 for a total of one event in the Third Quarter of 2013.

The following results were obtained from the groundwater sampling and NAPL monitoring events:

- The general direction of groundwater flow in the Third Quarter 2013 in the shallow, intermediate, and deep water-bearing zones was south at an average gradient of approximately 0.002 feet per feet (ft/ft) for shallow, intermediate, and deep water bearing zones.
- The 100 μg/L dissolved-phase plume extended approximately 2,000 ft south of the site boundary.
- Dense non-aqueous phase liquid (DNAPL) was detected in one existing well during
 the Third Quarter. The well (HIMW-21), is located along the west side of Wendell
 Street. Thirteen recovery wells were decommissioned in mid to late June in this same
 general area.
- NAPL recovery activities were resumed in February 2013 on a monthly basis. During the Third quarter product was recovered from one well (HIMW-21).

URS CORPORATION

- Approximately 4 gallons of NAPL were recovered during the Third Quarter of 2013.
 A total of 812.9 gallons of NAPL have been recovered from all recovery wells between April 2007 through Third Quarter 2013
- Based on a comparison between the Second Quarter 2013 and Third Quarter 2013
 data and the previous 2012 data, the concentrations of total BTEX and total PAHs
 remained stable. One monitoring well (HIMW-24) showed a significant decrease in
 both BTEX and PAH concentrations.

The first of two oxygen delivery systems (System No. 2) started operating in October 2010 and promoted aerobic conditions in the aquifer near the system during the Third Quarter of 2013. The second of two oxygen delivery systems (System No. 1) started operating in April 2011 and promoted aerobic conditions in the aquifer near the system during the Third Quarter of 2013.

Bimonthly headspace and water quality parameters were collected from the monitoring points for Systems No. 1 and No. 2 by Fenley & Nicol, Environmental, Inc. (F&N). During the Third Quarter, F&N monitored System No. 1 during six events and System No. 2 during six events.

1.0 INTRODUCTION

This quarterly report summarizes the field activities, analytical results, and data interpretations associated with groundwater sampling, gauging and recovery of NAPL and the monitoring of the groundwater treatment systems during the Third Quarter of 2013 at the Hempstead Intersection Street Former MGP site (refer to Figures 1 and 2).

Quarterly groundwater monitoring and bimonthly recovery of NAPL was initiated in April 2007. Separate reports are typically provided for the first three quarters of the year and the fourth quarter data typically gets reported as part of the Annual Report. Separate reports have been issued quarterly since 2007 as listed in the References section of this report.

URS performed the following activities during the Third Quarter of 2013:

- Measured the depth to groundwater and NAPL thickness in HIMW-21 (on September 16, 2013), see Tables 1 and 2 and Figure 2.
- Recovered NAPL from HIMW-21 on October 7, 2013, see Tables 1 and 3.
- Collected groundwater samples from 25 monitoring wells for laboratory analysis, see
 Table 4.

F&N also performed water level measurements, well headspace monitoring with a multigas meter (RKI Eagle MultiGas meter), and dissolved oxygen (DO) measurements with a DO meter (YSI 55A) on System No. 1 during six events and on System No. 2 during six events in the Third Quarter 2013. Monitoring is conducted bi-monthly to assess the performance of groundwater treatment System No. 1 and System No. 2. This data is presented in Table 5.

2.0 FIELD ACTIVITIES

The field activities performed by URS during the Third Quarter of 2013 included the measurement of the depth to groundwater and NAPL thickness in 41 monitoring wells, the collection of groundwater samples from 25 monitoring wells, and recovery of NAPL from accessible monitoring wells that contained measurable NAPL.

Monitoring wells and piezometers used for these activities are listed in Table 1. Third Quarter 2013 groundwater elevations and NAPL thickness values are presented in Table 2, NAPL recovery amounts are presented in Table 3, and the results of groundwater sampling are presented in Table 4.

F&N performed measurements to monitor the performance of the groundwater treatment Systems No. 1 and No. 2 approximately twice monthly during the Third Quarter of 2013. F&N collected water level measurements with an electronic oil/water interface probe, well headspace monitoring data with an RKI Eagle Multigas meter, and dissolved oxygen measurements with a YSI 55A dissolved oxygen meter on System No. 1 on July 12, July 26, August 12, August 22, September 6, and September 23, 2013 and on System No. 2 on July 11, July 25, August 9, August 22, September 5, and September 20, 2013. This data is presented in Table 5.

2.1 Groundwater Depth and NAPL Thickness Measurements

Depths to groundwater and NAPL thickness measurements are listed in Table 2. NAPL thicknesses and recovery amounts are listed in Table 3. An electronic oil/water interface probe was used to measure the depth to groundwater and check for the presence of light non-aqueous phase liquid (LNAPL). DNAPL thickness was measured using a weighted cotton string that absorbs oil.

2.2 NAPL Recovery

NAPL recovery occurred between 2007 and the Third Quarter of 2011 when the In Situ Solidification (ISS) remediation project began. Approximately 745 gallons of NAPL were recovered between 2007 and 2011 when NAPL recovery ended upon the start of ISS treatment. The earlier stage of the ISS treatment project was originally intended to begin at the Professional Office Building property, where the majority of the NAPL recovery wells were located. However, the project sequencing changed and the ISS work for the Professional Office Building property ultimately occurred at the end of the project and therefore NAPL recovery resumed during the first and second quarters of 2013. During the Third Quarter of 2013, ISS work began on the Professional Office Building property, and thus NAPL recovery stopped for all but one well, HIMW-21, which is located near the Professional Office Building, but outside the ISS area.

NAPL levels were monitored in well HIMW-21 during two events on September 16 and October 7, 2013. DNAPL was observed in the well. No LNAPL was observed. Recovery of NAPL was conducted on October 7, 2013. HIMW-21 was gauged using an oil/water interface probe to determine the depth to water and the depth and thickness to any possible LNAPL at the top of the water column. The well was then gauged with a weighted cotton string to measure the DNAPL thickness. The DNAPL was recovered using a dedicated bailer and recovered water and product was placed in a 55-gallon steel drum for subsequent offsite hazardous waste disposal.

The quantity of recovered DNAPL was estimated based on gallon markings on the side of the purge bucket used to collect the purged liquids during recovery. Table 3 presents Third Quarter NAPL thickness and NAPL recovery amounts from HIMW-21, located south of the site in the sidewalk of the Professional Office Building.

2.3 Groundwater Sampling

Low-flow groundwater sampling methods were used to sample groundwater, which included purging groundwater at a rate of between 100 and 500 milliliters per minute. The water was pumped through a flow-through cell and monitored for pH, conductivity, turbidity, DO, temperature, and oxidation-reduction potential (ORP). Purging was continued until stable conditions were achieved (defined as three consecutive stable readings [i.e. \pm 10 percent] over a 15 minute period). Groundwater samples were collected afterwards and shipped under chain-of-

2013 3rd QUARTER GROUNDWATER SAMPLING, NAPL MONITORING, AND GROUNDWATER TREATMENT PERFORMANCE REPORT

custody procedures to H2M laboratories, Inc. for analysis of BTEX (United States Environmental Protection Agency [USEPA] Method 8260B) and PAHs (USEPA Method 8270C). Purge water is stored in an onsite storage tank for subsequent offsite disposal. The Data Usability Summary Report is presented in Appendix A.

There were 25 monitoring wells sampled during the Third Quarter September 16 – September 26, 2013 groundwater sampling event. Results of this groundwater sampling event are presented in Table 4.

2.4 Groundwater Treatment System Operation

Two oxygen delivery systems were installed to treat the groundwater plume. "System No. 1" is located along Smith Street, a portion of the Long Island Railroad Right of Way, and a portion of Hilton Avenue and began operation in April 2011. "System No. 2" extends from Mirschel Park in the east to Kensington Court in the west and began operation in October 2010. Figure 3 shows the locations of the two systems.

The performance of System No. 1 and System No. 2 was monitored by F&N during the Third Quarter 2013 through the measurement of water levels, headspace gas, and water quality parameters in the groundwater approximately twice per month, see Table 5. F&N performed water level measurements with an electronic oil/water interface probe, well headspace monitoring with a multi-gas meter (RKI Eagle MultiGas meter), and dissolved oxygen (DO) measurements with a DO meter (YSI 55A). These measurements were collected during the Third Quarter and were taken for System No. 1 on July 12, July 26, August 12, August 22, September 6, and September 23, 2013 and on System No. 2 on July 11, July 25, August 9, August 22, September 5, and September 20, 2013. The full system data is included in Appendix B.

3.0 RESULTS

3.1 Dissolved-Phase Plume

The extent of the dissolved-phase groundwater plume boundary and the data for Third Quarter 2013 are shown in Figure 4. The downgradient boundary of the plume, which is defined by total BTEX or PAH concentrations greater than 100 μ g/L, extends approximately 2,000 feet south of the site boundary. Based on comparisons to previous quarterly groundwater monitoring

2013 3rd QUARTER GROUNDWATER SAMPLING, NAPL MONITORING, AND GROUNDWATER TREATMENT PERFORMANCE REPORT

data, the concentrations of total BTEX or PAHs in groundwater sampled during the Third Quarter in most site monitoring wells remained relatively stable, while a few wells showed modest changes, and one well showed a significant decrease of BTEX and PAH concentrations.

In September 2013, the concentrations of total BTEX or total PAHs in the furthest downgradient well pair (HIMW-015I/D) ranged from "not detected" (deep well, HIMW-015D) to 9 μ g/L for BTEX and 27 μ g/L for PAHs (intermediate well, HIMW-015I). The concentrations of total BTEX or total PAHs in wells located between the site and the HIMW-015 cluster varied from "not detected" to 3,385 μ g/L (intermediate well, HIMW-005I) for PAHs, see Figure 4.

The following are some wells showing notable changes during Third Quarter 2013. Wells HIMW-5D, HIMW-005I, HIMW-013I, HIMW-014I, and HIMW-024 are discussed below:

- For HIMW-005D, total BTEX concentrations decreased from 23 μg/L in the Second
 Quarter to 19 μg/L in the Third Quarter. PAH concentrations decreased from 508
 μg/L in the Second Quarter to 146 μg/L in the Third Quarter. This is consistent with
 the downward trend of PAH values for this well.
- For HIMW-005I, total BTEX concentrations decreased slightly from 96 ug/L in the Second Quarter to 85 ug/L in the Third Quarter. PAH concentrations increased for the second consecutive quarter from 2,155 ug/L in the Second Quarter to 3,385 ug/L in the Third Quarter.
- For HIMW-013I, total BTEX concentrations increased from 83 μg/L in the Second Quarter to 153 μg/L in the Third Quarter. PAH concentrations increased from 60 μg/L in the Second Quarter to 113 μg/L in the Third Quarter.
- For HIMW-014I, total BTEX concentrations decreased from 45 ug/L in the Second Quarter to 12 ug/L in the Third Quarter. PAH concentrations decreased from 103 μg/L in the Second Quarter to 34 μg/L in the Third Quarter.
- For HIMW-024, total BTEX concentrations decreased significantly from 226 μg/L in the Second Quarter to 13 μg/L in the Third Quarter. PAH concentrations decreased from 126 μg/L in the Second Quarter to 7 μg/L in the Third Quarter.

3.2 <u>Potentiometric Heads and NAPL Thickness</u>

Potentiometric heads and NAPL thickness measurements for Third Quarter 2013 are presented in Table 2. Potentiometric surface maps for shallow, intermediate, and deep groundwater zones were developed using this data and are shown in Figures 5, 6, and 7 for Third Quarter 2013. The data for Third Quarter 2013 indicates that the direction of groundwater flow within the well field was south at an average gradient of approximately 0.002 ft/ft for shallow, intermediate, and deep water bearing zone. These values are historically consistent.

DNAPL was observed in the one well monitored during the Third Quarter 2013. The well (HIMW-021) is located along the west side of Wendell Street near the Professional Office Building located south of the site (Figure 8). All wells in the parking lot of the POB were decommissioned in late June 2013 during ISS work. Wells located within the property boundary of the site were previously decommissioned in Fourth Quarter 2011 with the start of the ISS remediation project.

3.3 Groundwater Analytical Results

Groundwater analytical results are summarized in Section 3.1, Table 4, and Appendix A and are illustrated on Figure 4.

A Data Usability Summary Report (DUSR) was prepared following the guidelines provided in NYSDEC Division of Environmental Remediation DER-10, Technical Guidance for Site Investigation and Remediation, Appendix 2B – Guidance for the Development of Data Usability Summary Reports, May 2010. An electronic copy of the DUSR is included as Appendix A. The review included a review of holding times; completeness of all required deliverables; quality control (QC) results (blanks, instrument tunes, calibration standards, matrix spike recoveries, duplicate analyses, and laboratory control sample recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers. All sample analyses were found to be compliant with the method and validation criteria and the data is useable as reported, except where noted in the DUSRs.

3.4 NAPL Recovery Volumes

ISS work in the parking lot of the POB was ongoing through the Third Quarter of 2013. As a result, all recovery wells in the POB parking lot were decommissioned leaving a single recovery well remaining (HIMW-021). Four gallons of NAPL were recovered at the beginning of the Fourth Quarter (October 7) following completion of ISS work in the parking lot. A total of 812.9 gallons of NAPL have been recovered from all of the recovery wells for the period of April 2007 through Third Quarter 2013 (Table 3).

3.5 Groundwater Treatment System Performance

Groundwater treatment system performance data for Third Quarter 2013, as collected and reported by F&N, is presented in Table 5.

System No. 1

System No. 1 was down between the dates of August 13, 2013 and September 9, 2013 due to a malfunctioning fan. Because of this shutdown, DO readings reported during monitoring events on August 22 and September 6, 2013 are considerably lower than recorded in recent quarters and during the four other monitoring events conducted during the Third Quarter. This lower DO indicates that oxygen is being consumed, providing an indication of robust biological activity in the groundwater. DO readings reported in the Third Quarter 2013 during events when the system was operating ranged from a low of 7.16 mg/L at MP-1-8 to a high of 52.66 mg/L at MP-1-3D. The wells MP-1-2D and MP-1-3D had consistently high dissolved oxygen concentrations during the Third Quarter prior to system shutdown. In the Third Quarter, there were no PID headspace readings above 1 ppm.

Based on the data collected during the Third Quarter of 2013, System No. 1 is performing as expected and creating an aerobic environment in the aquifer.

System No. 2

System No. 2 DO readings reported in the Third Quarter 2013 ranged from 13.54 mg/L at MP-2-4 to 50.05 mg/L at MP-2-3S, middle of water column. The wells with more consistently

2013 3rd QUARTER GROUNDWATER SAMPLING, NAPL MONITORING, AND GROUNDWATER TREATMENT PERFORMANCE REPORT

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

high dissolved oxygen concentrations (over 40 mg/L) were MP-2-2 and MP-2-3S. There were no PID headspace readings above 1 ppm for System No. 2 in the Third Quarter.

Based on the data collected during the Third Quarter of 2013, System No. 2 is performing as expected and creating an aerobic environment in the aquifer.

4.0 SUMMARY

Following is a summary of the Third Quarter 2013 groundwater sampling, NAPL monitoring and recovery data, and groundwater treatment performance presented in this report:

- The general direction of groundwater flow in the Third Quarter 2013 in the shallow, intermediate, and deep water-bearing zones was south at an average gradient of approximately 0.002 feet per feet (ft/ft) for shallow, intermediate, and deep water bearing zones.
- The 100 μg/L dissolved-phase plume extended approximately 2,000 ft south of the site boundary.
- DNAPL was detected in the one existing well (HIMW-021) monitored during the Third Quarter. The well (HIMW-21) was located immediately south of the site along the west side of Wendell Street near the POB. Four gallons of NAPL was recovered from this well on October 7, 2013.
- Approximately 812.9 gallons of NAPL has been recovered from all the recovery wells for the period of April 2007 through the Third Quarter 2013.
- Based on a comparison between the Second Quarter 2013 and Third Quarter 2013 data and previous data, the concentrations of total BTEX and total PAHs remained stable.
- The first of two oxygen delivery systems (System No. 2), brought on line in October 2010, is promoting aerobic conditions in the aquifer near the system.
- The second of two oxygen delivery systems (System No. 1), brought on line in April 2011, is promoting aerobic conditions in the aquifer near the system.
- Bimonthly headspace and water quality parameters were collected from the
 monitoring points for Systems No. 1 and No. 2 by F&N. During the Third Quarter,
 F&N monitored System No. 1 and No. 2 during six events. Both systems are
 performing as expected and creating an aerobic environment in the aquifer.

REFERENCES

- URS, 2007. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second and Third Quarters of 2007 (April 2007 and July-August 2007) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2008a. 2007 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2008b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2008 (January March 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2008c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2008 (April June 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2009a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2008 (July September 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- URS, 2009b. 2008 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. March.
- URS, 2009c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2009 (January March 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2009d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2009 (April June 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2009e. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2009 (July September 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2010a. 2009 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2010b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2010 (January March 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. April.
- URS, 2010c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2010 (April June 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.

- URS, 2010d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2010 (July September 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2010e. 2010 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2011a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2011 (January March 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. July.
- URS, 2011b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2011 (April June 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2011c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2011 (July- September 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2012a. 2011 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. May.
- URS, 2012b. Groundwater Sampling and Groundwater Treatment Performance Report for the First Quarter of 2012 (January March 2012) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2012c. Groundwater Sampling and Groundwater Treatment Performance Report for the Second Quarter of 2012 (April June 2012) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2013a. 2012 Annual Groundwater Sampling, NAPL Monitoring, and Groundwater Treatment Performance Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. May.
- URS, 2013b. Groundwater Sampling and Groundwater Treatment Performance Report for the First Quarter of 2013 (January March 2013) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2013c. Groundwater Sampling and Groundwater Treatment Performance Report for the Second Quarter of 2013 (April June 2013) for the Hempstead Intersection Street Former Manufactured Gas Plant Site.

TABLES

Table 1 Thickness Measurements, NAPL Recovery, and Water Quality Sampling

Third Quarter 2013 (1), (2) Hempstead Intersection Street Former MGP Site

Well ID	(Septe	Third Quarter ember 16 to 26,	2013)	Monitoring and DNAPL Recovery
	Water	NAPL	Water	October 7,
	Level	Thickness	Quality	2013
HIMW-002S*	20101	111101111000	quanty	2010
HIMW-002I*				
HIMW-002D*				
HIMW-003S	Х	Х	Х	
HIMW-003I	X	X	X	
HIMW-003D	X	X	X	
HIMW-004S	X	X		
HIMW-004I	X	X		
HIMW-004D	X	X		
HIMW-005S	X	X	Х	
HIMW-005I	X	X	X	
HIMW-005D	X	X	X	
HIMW-008S	X	X	X	
HIMW-008I	X	X	X	
HIMW-008D	X	X	X	
HIMW-009S	X	X		
HIMW-009I	X	X		
HIMW-009D	X	X		
HIMW-010S	X	X		
HIMW-010I	X	X		
HIMW-010D**				
HIMW-011S	Х	Х		
HIMW-0111	X	X		
HIMW-011D	X	X		
HIMW-011B	X	X	Х	
HIMW-012I	X	X	X	
HIMW-012D	X	X	X	
HIMW-013S	X	X	X	
HIMW-0133	X	X	X	
HIMW-013D	X	X	X	
HIMW-014I	X	X	X	
HIMW-014D	X	X	X	
HIMW-015I	X	X	X	
HIMW-015D	X	X	X	
HIMW-016S	, , , , , , , , , , , , , , , , , , ,	Decommission		
HIMW-0163		Decommission		
HIMW-017S		Decommission		
HIMW-20S	X	X	X	
HIMW-20I	X	X	X	
HIMW-21	X	X		Х
HIMW-22	X	X	Χ	
HIMW-23	X	X	X	
HIMW-24	X	X	X	
HIMW-25	X	X	Х	
PZ-02	X	X		
PZ-03	X	X		

Table 1

Thickness Measurements, NAPL Recovery, and Water Quality Sampling

Third Quarter 2013 (1), (2) Hempstead Intersection Street Former MGP Site

Well ID	(Septe	Third Quarter (September 16 to 26, 2013)										
	Water	Water NAPL Water										
	Level	Thickness	Quality	2013								
IPR-18		Decommission	ed, June 2013									
IPR-19S		Decommission	ed, June 2013									
IPR-19D		Decommission	ed, June 2013									
IPR-20		Decommission	ed, June 2013									
IPR-21		Decommission	ed, June 2013									
IPR-22		Decommission	ed, June 2013									
IPR-23		Decommission	ed, June 2013									
IPR-24		Decommission	ed, June 2013									
IPR-29		Decommission	ed, June 2013									
IPR-30		Decommission	ed, June 2013									
OSMW-01***												
OSMW-02	X	X										
OSMW-03	Х											

Notes:

- 1 Field marked with "X" indicates that the activity was performed.
- Blank field indicates that the activity was not performed.
- During 2012, the stick up risers at HIMW-002 S, I, and D were cut to grade. Water levels were not collected because the locations were not resurveyed.
- ** HIMW-10D was destroyed by sidewalk/driveway construction.
- *** Location of well OSMW-01 was not found.

Shaded cell indicates well was abandoned in June 2013.

Table 2 Groundwater and NAPL Measurements Third Quarter 2013 Hempstead Intersection Street Former MGP Site

Well ID	Doto	Elevation of TOR	Depth to LNAPL	Depth to Water	Depth to	Well	Thickness of LNAPL	Thickness of DNAPL	Corrected Potentiometric				
well ID	Date					Depth		OI DINAPL	Head (1)				
		[ft amsl]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]				
HIMW-002S	9/16/2013	73.82	NM	NM	NM	39.80	NM	NM	NM				
HIMW-002I	9/16/2013	78.87	NM	NM	NM	88.80	NM	NM	NM				
HIMW-002D	9/16/2013	74.13	NM NM		NM	110.80	NM	NM	NM				
HIMW-003S	9/16/2013	65.00	ND	18.13	ND	34.51	0	0.00	46.87				
HIMW-003I	9/16/2013	64.94	ND	18.17	ND	85.31	0	0.00	46.77				
HIMW-003D	9/16/2013	65.26	ND	19.17	ND	142.76	0	0.00	46.09				
HIMW-004S	9/16/2013	72.74	ND	26.51	ND	41.61	0	0.00	46.23				
HIMW-004I	9/16/2013	72.78	ND	26.69	ND	90.40	0	0.00	46.09				
HIMW-004D	9/16/2013	72.65	ND	27.48	ND	177.09	0	0.00	45.17				
HIMW-005S	9/16/2013	67.19	ND	20.84	ND	38.91	0	0.00	46.35				
HIMW-005I	9/16/2013	67.22	ND	21.08	ND	91.92	0	0.00	46.14				
HIMW-005D	9/16/2013	67.22	ND	21.85	ND	139.60	0	0.00	45.37				
HIMW-008S	9/16/2013	65.04	ND	19.16	ND	36.96	0	0.00	45.88				
HIMW-008I	9/16/2013	65.14	ND	19.31	ND	75.02	0	0.00	45.83				
HIMW-008D	9/16/2013	64.93	ND	19.12	ND	114.63	0	0.00	45.81				
HIMW-009S	9/16/2013	70.03	ND	23.64	ND	39.61	0	0.00	46.39				
HIMW-009I	9/16/2013	69.93	ND	23.62	ND	80.45	0	0.00	46.31				
HIMW-009D	9/16/2013	69.96	69.96 ND 23.74 ND 122.80		0	0.00	46.22						
HIMW-010S	9/16/2013	71.60	ND	24.28	ND	39.10	0	0.00	47.32				
HIMW-010I	9/16/2013	71.47	ND	24.07	ND	89.77	0	0.00	47.40				
HIMW-010D ⁽²⁾	9/16/2013	71.44	NM	NM	NM	136.02	0	0.00	NM				
HIMW-011S	9/16/2013	71.62	ND	24.69	ND	39.85	0	0.00	46.93				
HIMW-011I	9/16/2013	71.43	ND	24.53	ND	92.95	0	0.00	46.90				
HIMW-011D	9/16/2013	71.39	ND	24.54	ND	122.10	0	0.00	46.85				
HIMW-012S	9/16/2013	61.58	ND	16.86	ND	32.95	0	0.00	44.72				
HIMW-012I	9/16/2013	61.59	ND	16.75	ND	74.50	0	0.00	44.84				
HIMW-012D	9/16/2013	61.82	ND	19.63	ND	128.31	0	0.00	42.19				
HIMW-013S	9/16/2013	72.83	ND	29.92	ND	48.57	0	0.00	42.91				
HIMW-013I	9/16/2013	72.60	ND	29.7	ND	81.52	0	0.00	42.90				
HIMW-013D	9/16/2013	72.53	ND	29.72	ND	121.93	0	0.00	42.81				
HIMW-014I	9/16/2013	71.71	ND	28.81	ND	96.54	0	0.00	42.90				
HIMW-014D	9/16/2013	71.59	ND	32.82		152.04	0	0.00	38.77				
HIMW-015I	9/16/2013	64.18	ND	24.72	ND	92.45	0	0.00	39.46				
HIMW-015D	9/16/2013	63.96	ND	27.89	ND	153.14	0	0.00	36.07				
HIMW-016S				Decor	nmissioned	l in June 2	013						
HIMW-016I				Decor	mmissioned	l in June 20	013						
HIMW-017S	Decommissioned in June 2013												
HIMW-020S	9/16/2013	70.43	ND	25.01	ND	36.61	0	0.00	45.42				
HIMW-020I	9/16/2013	70.30	ND	24.86	ND	74.51	0	0.00	45.44				

Table 2 Groundwater and NAPL Measurements Third Quarter 2013

Hempstead Intersection Street Former MGP Site

Well ID	Date	Elevation of TOR	Depth to LNAPL	Water	Depth to DNAPL	Well Depth	Thickness of LNAPL	Thickness of DNAPL	Corrected Potentiometric Head ⁽¹⁾						
		[ft amsl]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]						
HIMW-021	9/16/2013	NM	ND	19.99	41.6	45.30	0	3.70	NM						
HIMW-022	9/16/2013	NM	ND	29.91	ND	64.41	0	0.00	NM						
HIMW-023	9/16/2013	NM	ND	30.07	ND	75.56	0	0.00	NM						
HIMW-024	9/16/2013	NM	ND	14.62	ND	55.01	0	0.00	NM						
HIMW-025	9/16/2013	NM	ND	17.03	ND	52.29	0	0.00	NM						
PZ-02	9/16/2013	72.96	NM	25.26	NM	35.25	0	0.00	47.70						
PZ-03	9/16/2013	64.58	NM	17.22	NM	29.49	0	0.00	47.36						
IPR-18	Decommissioned in June 2013														
IPR-19S ⁽²⁾	Decommissioned in June 2013														
IPR-19D				Decor	nmissioned	l in June 20	013								
IPR-20				Decor	nmissioned	l in June 20	013								
IPR-21				Decor	nmissioned	l in June 2	013								
IPR-22				Decor	nmissioned	l in June 20	013								
IPR-23				Decor	nmissioned	l in June 20	013								
IPR-24				Decor	nmissioned	l in June 2	013								
IPR-29				Decor	nmissioned	l in June 20	013								
IPR-30				Decor	nmissioned	l in June 20	013								
OSMW-01	9/16/2013 71.12		NM	NM	NM	42.15	0	NM	NM						
OSMW-02	9/16/2013			24.78	NM	45.06	0	NM	46.81						
OSMW-03	9/16/2013	71.39	NM	24.65	NM	44.73	0	NM	46.74						

Notes:

(1) Potentiometric heads in wells containing LNAPL are corrected

using a specific gravity = 0.96

(2) HIMW-010D was destroyed in Third Quarter 2011. HIMW-019S is covered with cold patch and inaccessible.

Shaded cell indicates well was decommissioned in June 2013.

sheen Sheen = assumed thickness of 0.01 ft

NM not measured

LNAPL light non-aqueous phase liquid DNAPL dense non-aqueous phase liquid

TOR top of riser

amsl above mean sea level ND NAPL not detected

Table 3 NAPL Recovery Third Quarter 2013 Hempstead Intersection Street Former MGP Site

		(October 7, 201	3				
	Well	Thickness	Thickness	Volume				
Well ID	Diameter	of LNAPL	of DNAPL	of NAPL				
	Diamotor			Removed				
		[ft]	[ft]	[gal]				
HIMW-016S	2	Decomr	missioned in Ju	une 2013				
HIMW-016I	2	Decomr	missioned in Ju	une 2013				
HIMW-017S	2	Decomr	missioned in Ju	une 2013				
HIMW-021	6	ND	3.70	4.00				
IPR-18	6	Decomr	nissioned in Ju	une 2013				
IPR-19S	6	Decomr	missioned in Ju	une 2013				
IPR-19D	6	Decommissioned in June 2013						
IPR-20	6	Decomr	missioned in Ju	une 2013				
IPR-21	6	Decomr	missioned in Ju	une 2013				
IPR-22	6	Decomr	missioned in Ju	une 2013				
IPR-23	6	Decomr	missioned in Ju	une 2013				
IPR-24	6	Decomr	missioned in Ju	une 2013				
IPR-29	6	Decomr	missioned in Ju	une 2013				
IPR-30	6	Decomr	missioned in Ju	une 2013				
	·	Volume Rem	noved	4.00				

Total volume recovered during the Third Quarter 2013:

4.00

Total volume of NAPL recovered since April 2007:

812.93

Notes:

	Shaded cell indicates well was decommissioned in June 2013.
LNAPL	Light Non-Aqueous Phase Liquid
DNAPL	Dense Non-Aqueous Phase Liquid
ND	NAPL Not Detected
NM	Not Measured

Table 4

Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds Third Quarter of 2013

Hempstead Intersection Street Former MGP Site

	Third Qua	arter 2013					
		eptember 26, 2013					
Well ID	Total BTEX	Total PAH					
		[ug/L]					
HIMW-002D	[ug/L]	[ug/L]					
HIMW-002D							
HIMW-002S							
HIMW-003D	ND	ND					
HIMW-003I	ND ND	ND ND					
HIMW-003S	ND	ND ND					
HIMW-004D	ND	ND					
HIMW-004I							
HIMW-004S							
HIMW-005D	19	146					
HIMW-005I	85	3,385					
HIMW-005S	ND	ND					
HIMW-008D	ND	ND ND					
HIMW-008I	ND ND	ND ND					
HIMW-008S	32	4					
HIMW-009D	<u> </u>						
HIMW-009I							
HIMW-009S							
HIMW-010D							
HIMW-010I							
HIMW-010S							
HIMW-011D							
HIMW-011I							
HIMW-011S							
HIMW-012D	ND	ND					
HIMW-012I	33	107					
HIMW-012S	ND (DUP - ND)	ND (DUP - ND)					
HIMW-013D	3	14					
HIMW-013I	153	113					
HIMW-013S	ND	ND					
HIMW-014D	ND	ND					
HIMW-014I	12	34					
HIMW-015D	ND	ND					
HIMW-015I	9	27					
HIMW-016I							
HIMW-016S							
HIMW-017S							
HIMW-020I	3 (DUP - 3)	5 (DUP - 4)					
HIMW-020S	ND	5					
HIMW-021							
HIMW-022	ND	ND					
HIMW-023	ND	ND					
HIMW-024	13	7					
HIMW-025	ND	ND					
PZ-02							
PZ-03							

Notes:

A blank field is "Not Sampled".

NAPL is periodically identified in this well.

ND Not Detected.

ug/L micrograms per liter

DUP indicates a duplicate sample

Table 5 **Groundwater Treatment Performance Monitoring** Third Quarter 2013 **Hempstead Intersection Street Former MGP Site**

System #1

			July 12,	, 2013			July 26, 2013							August 12, 2013						August 22, 2013 ³					
Well ID ⁽²⁾	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	
MP-1-1S	24.98	38.6	0.0	18.27	NM	NM	25.19	40.0	0.0	21.11	NM	NM	25.48	39.8	0.2	18.68	NM	NM	25.64	39.5	0.1	9.87	NM	NM	
MP-1-1D	24.92	21.2	0.4	20.6	17.41	9.91	25.12	20.9	0.5	19.91	15.14	12.27	25.40	20.9	0.6	22.12	21.77	19.10	25.55	20.0	0.5	14.58	5.38	2.10	
MP-1-2S	19.44	39.7	0.1	20.88	NM	NM	19.67	39.6	0.2	23.66	NM	NM	19.97	39.2	0.1	38.11	NM	NM	20.15	39.9	0.0	9.87	NM	NM	
MP-1-2D	19.19	38.1	0.0	47.29	42.14	39	19.42	38.1	0.0	45.79	40.11	39.95	19.62	39.4	0.3	37.17	35.99	34.07	19.92	38.5	0.2	11.88	9.10	4.11	
MP-1-3S	17.32	37.6	0.0	20.83	NM	NM	17.50	39.9	0.3	34.39	NM	NM	17.77	39.0	0.4	23.89	NM	NM	17.94	39.3	0.0	19.49	NM	NM	
MP-1-3D	17.45	20.9	0.0	37.83	37.17	36.21	17.61	19.4	0.0	42.12	40.55	39.00	17.86	18.9	0.0	52.66	45.11	41.14	18.09	19.1	0.0	8.31	7.70	5.14	
MP-1-4S	20.19	21.9	0.0	32.77	NM	NM	20.37	32.4	0.0	35.37	NM	NM	20.72	40.0	0.0	23.29	NM	NM	20.72	40.0	0.0	5.35	NM	NM	
MP-1-4D	20.13	39.7	0.5	29.12	33.78	35.11	20.35	39.3	0.4	39.38	37.61	35.38	20.61	36.2	0.5	37.39	38.77	35.41	20.75	38.9	0.4	8.66	9.12	6.60	
MP-1-5	24.71	20.2	0.0	21.44	NM	NM	24.93	19.9	0.0	32.77	NM	NM	25.21	16.6	0.0	29.64	NM	NM	25.37	16.5	0.0	22.27	NM	NM	
MP-1-6	16.97	21.7	0.0	14.62	NM	NM	17.09	20.9	0.0	10.50	NM	NM	17.47	20.9	0.0	11.62	NM	NM	17.62	18.3	0.0	6.03	NM	NM	
MP-1-7	20.23	20.9	0.0	21.49	NM	NM	20.40	19.9	0.0	32.40	NM	NM	20.75	18.8	0.0	39.37	NM	NM	20.89	18.8	0.0	31.60	NM	NM	
MP-1-8	21.75	17.6	0.0	7.16	NM	NM	21.91	37.5	0.2	9.45	NM	NM	22.26	28.7	0.0	12.22	NM	NM	22.41	23.6	0.0	12.90	NM	NM	

			Septembe	r 6, 2013³			September 23, 2013									
Well ID ⁽²⁾	DTW (ft) O ₂ Head- space (%O ₂) ⁽¹⁾		PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top				
MP-1-1S	26.07	39.3	0.1	9.08	NM	NM	26.44	39.7	0.1	11.11	NM	NM				
MP-1-1D	26.00	20.9	0.3	3.71	1.84	1.12	26.36	20.9	0.1	14.45	15.00	13.27				
MP-1-2S	20.58	39.6	0.0	9.31	NM	NM	20.93	39.0	0.0	12.27	NM	NM				
MP-1-2D	20.35	36.1	0.4	14.47	10.15	6.52	20.71	34.5	0.4	16.77	9.75	10.12				
MP-1-3S	18.45	31.4	0.2	16.67	NM	NM	18.70	30.2	0.0	21.12	NM	NM				
MP-1-3D	18.56	19.8	0.0	7.20	5.11	4.77	18.85	19.7	0.0	14.45	12.29	9.97				
MP-1-4S	21.35	36.5	0.0	1.70	NM	NM	21.61	36.0	0.0	7.01	NM	NM				
MP-1-4D	21.33	24.8	0.3	2.22	1.40	0.98	21.55	25.1	0.2	5.51	7.11	8.87				
MP-1-5	25.81			21.50	NM	NM	26.18	17.1	0.0	24.19	NM	NM				
MP-1-6	18.09	18.1	0.0	4.23	NM	NM	18.40	15.4	0.0	9.37	NM	NM				
MP-1-7	21.38	21.4	0.0	34.60	NM	NM	21.64	20.3	0.0	33.39	NM	NM				
MP-1-8	22.92	19.0	0.0	9.14	NM	NM	22.18	19.0	0.0	12.29	NM	NM				

- Abbreviations
 DTW: Depth to water (feet)
 - O₂: Oxygen measurement of well headspace (percent oxygen)
 - PID: Photoionization Detector measurement of well headspace (parts per million)
 - DO: Dissolved Oxygen concentration (percent or milligrams per liter)
 NA: Not Accessible
 - NM: Not Measured

Notes

- DO Headspace monitor oxygen detection limit is 40.0%; normal oxygen level in air is 20.9% DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-9D (81 feet), MP-1-3D (81 feet), MP-1-3D (81 feet), MP-1-4D (83 feet), MP-1-5 (81 feet), MP-1-6 (81 feet), MP-1-2D (81 feet), MP-1-3D (81 feet), MP-1-4D (83 feet), MP-1-5 (81 feet), MP-1-6 (81 feet), MP-1-3D (81 feet), MP-1-3D (81 feet), MP-1-4D (83 feet), MP-1-5 (81 feet), MP-1-6 (81 feet), MP-1-3D (81 feet), MP-1-3D (81 feet), MP-1-4D (83 feet), MP-1-5 (81 feet), MP-1-5 (81 feet), MP-1-3D (81 feet), MP-1-3D (81 feet), MP-1-4D (83 feet), MP-1-5 (81 feet), MP-1-5 (1-7 (64 feet) and MP-1-8 (58 feet).
- DO reading's reported on August 22, 2013 and September 6, 2013 were collected while System No. 1 was not running due to a broken fan.

Table 5 **Groundwater Treatment Performance Monitoring** Third Quarter 2013 **Hempstead Intersection Street Former MGP Site**

System #2

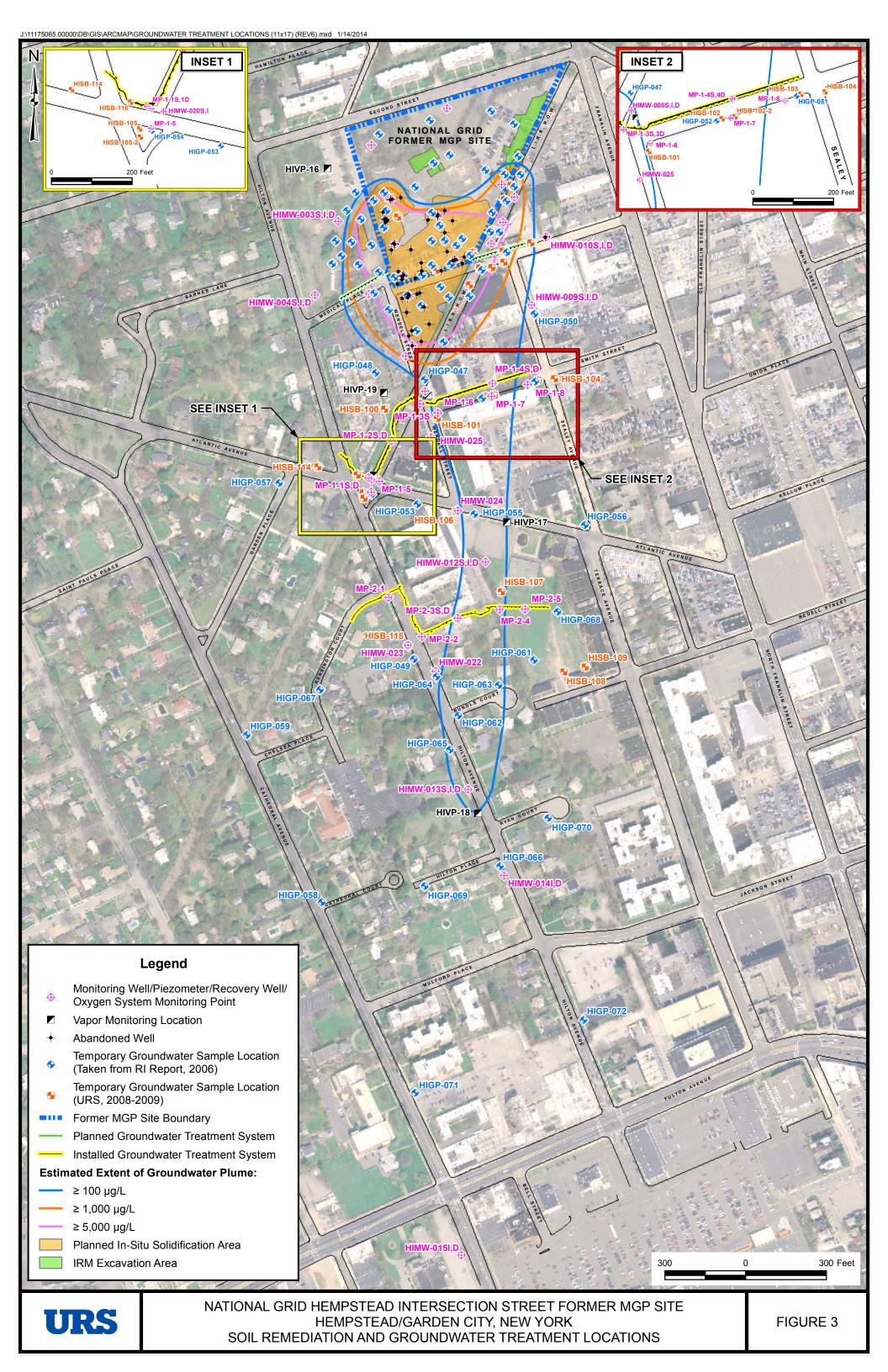
			July 11	, 2013			July 25, 2013					August 9, 2013						August 22, 2013						
Well ID	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top
MP-2-1	27.82	22.4	0.0	21.71	NM	NM	28.11	23.6	0.0	17.71	NM	NM	28.26	22.8	0.0	21.91	NM	NM	28.51	22.6	0.4	24.39	NM	NM
MP-2-2	29.15	19.9	0.0	37.41	30.12	33.51	29.47	20.2	0.0	26.83	25.19	20.11	29.62	19.2	0.1	41.11	36.29	27.61	29.86	19.6	0.4	40.07	38.11	35.00
MP-2-3S	29.05	19.5	0.0	47.52	47.98	49.61	29.36	26.6	0.0	45.41	46.25	41.99	29.48	23.1	0.2	47.17	50.05	48.88	29.72	24.6	0.5	45.59	46.77	44.01
MP-2-3D	29.16	38.9	0.5	40.11	37.17	35.14	29.48	40.0	0.4	37.88	35.13	34.00	29.59	40.0	0.5	39.81	40.07	39.79	29.87	39.7	0.0	41.12	38.81	35.14
MP-2-4	17.76	24.6	0.2	20.69	NM	NM	18.06	23.3	0.3	13.54	NM	NM	18.20	23.7	0.2	17.81	NM	NM	18.45	21.7	0.3	16.77	NM	NM
MP-2-5	15.93	21.2	0.0	20.44	22.62	27.37	16.22	22.5	0.0	17.44	15.49	16.12	16.35	20.9	0.0	25.83	21.70	20.83	16.61	20.9	0.0	23.84	21.19	18.88

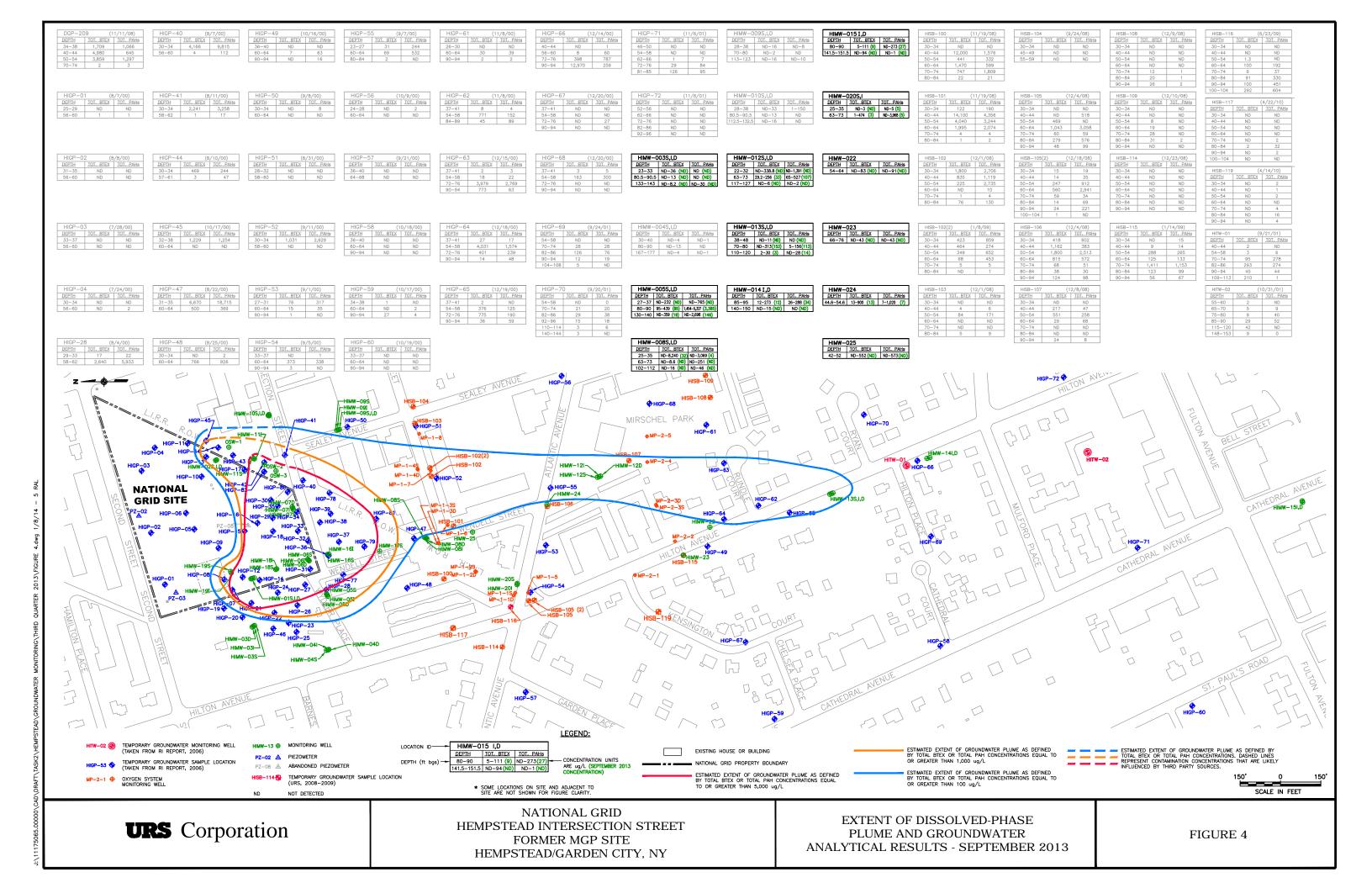
	September 5, 2013						September 20, 2013					
Well ID	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top
MP-2-1	28.87	21.9	0.3	21.33	NM	NM	29.35	22.5	0.2	28.55	NM	NM
MP-2-2	30.23	19.6	0.5	43.27	30.13	29.99	30.66	19.4	0.2	46.86	40.12	37.77
MP-2-3S	30.13	25.1	0.5	46.44	41.12	37.74	30.56	25.1	0.5	42.55	33.13	30.74
MP-2-3D	30.25	38.4	0.0	34.99	31.48	30.99	30.70	38.7	0.0	40.12	19.19	26.16
MP-2-4	18.86	22.4	0.4	17.63	NM	NM	19.29	20.9	0.2	17.88	NM	NM
MP-2-5	17.02	20.9	0.1	38.17	21.11	16.68	17.47	20.9	0.0	46.81	21.12	11.07

Abbreviations
DTW: Depth to water (feet)

O₂: Oxygen measurement of well headspace (percent oxygen)
PID: Photoionization Detector measurement of well headspace (parts per million)
DO: Dissolved Oxygen concentration (percent or milligrams per liter)

NA: Not Accessible NM: Not Measured


Note (1)


DO Headspace monitor oxygen detection limit is 40.0%; normal oxygen level in air is 20.9%

FIGURES

Æ J:\11175065.00000\CAD\DRAFT\TASK2\HEMPSTEAD\GROUNDWATER MONITORING\FIGURE-1.dwg 3/13/09

POTENTIOMETRIC SURFACE MAP FOR SHALLOW GROUNDWATER SEPTEMBER 16, 2013

Corporation

FIGURE 5

Corporation POTENTIOMETRIC SURFA

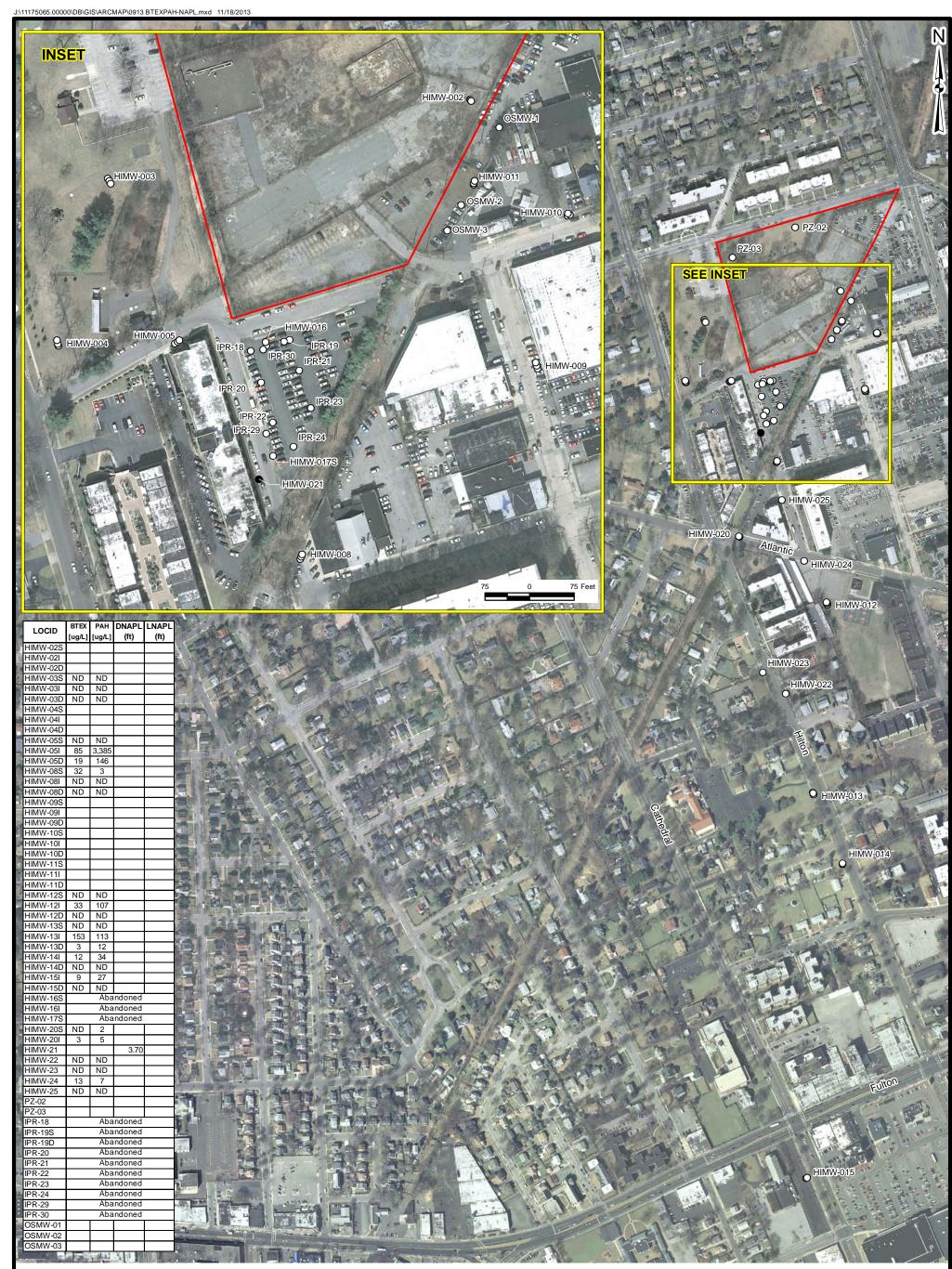

HEMPSTEAD/GARDEN CITY, NY
POTENTIOMETRIC SURFACE MAP FOR INTERMEDIATE GROUNDWATER
SEPTEMBER 16, 2013

FIGURE 6

URS Corporation

HEMPSTEAD/GARDEN CITY, NY
POTENTIOMETRIC SURFACE MAP FOR DEEP GROUNDWATER
SEPTEMBER 16, 2013

FIGURE 7

Legend

- Monitoring Well Product Detected
- Monitoring Well Product Not Detected

Former MGP Site Boundary

Notes:

LOCID - Location Identifier

BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes PAH - Polynuclear Aromatic Hydrocarbons

DNAPL - Dense Non-Aqueous Phase Liquid

LNAPL - Light Non-Aqueous Phase Liquid

µg/L - Micrograms per Liter

ft - Feet of Product Thickness

ND - Non Detect

HEMPSTEAD/GARDEN CITY, NY

TOTAL DISSOLVED-PHASE BTEX/PAH CONCENTRATIONS AND FREE PRODUCT THICKNESS THIRD QUARTER 2013

FIGURE 8

400

400 Feet

APPENDIX A DATA USABILITY SUMMARY REPORT

APPENDIX A DATA USABILITY SUMMARY REPORT THIRD QUARTER 2013

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE VILLAGES OF GARDEN CITY AND HEMPSTEAD LONG ISLAND, NEW YORK

Analyses Performed by: H2M LABS, INC.

Prepared For:

NATIONAL GRID

175 EAST OLD COUNTRY RD.

HICKSVILLE, NY 11801

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

NOVEMBER 2013

TABLE OF CONTENTS

		Page No.
I.	INTRO	DUCTION A-1
П.	ANAL	YTICAL METHODOLOGIES AND DATA VALIDATION A-1
III.	DATA	DELIVERABLE COMPLETENESS
IV.	SAMPI	LE RECEIPT/HOLDING TIMES
V.	NON-C	CONFORMANCES
VI.	SAMPI	LE RESULTS AND REPORTING
VII.	SUMM	ARY
		TABLES (Following Text)
Table A	A-1	Validated Groundwater Sample Analytical Results
Table A	N-2	Validated Field QC Sample Analytical Results
	3	APPENDICES (Following Tables)
Attachi	ment A	Validated Form 1's
Attachi	ment B	Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation DER-10, Technical Guidance for Site Investigation and Remediation, Appendix 2B - Guidance for Data Deliverables and Development of Data Usability Summary Reports, May 2010.

This DUSR discusses the usability of the analytical data for twenty-five (25) groundwater samples, two (2) field duplicates, two (2) matrix spike/matrix spike duplicate (MS/MSD) pairs, one (1) field blank, and four (4) trip blanks collected by URS personnel on September 17-26, 2013. The samples were collected as part of the 2013 3rd quarter groundwater monitoring event at the Hempstead Intersection Street Former MGP Site.

II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION

The samples were analyzed by H2M Labs, Inc. (Melville, NY) for the following parameters:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) USEPA Method SW8260B, and
- Polynuclear aromatic hydrocarbons (PAHs) USEPA Method SW8270C.

A limited data validation was performed on the samples in accordance with the guidelines presented in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846
 Method 8260B, SOP HW-24, Rev. 2, August 2008; and
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D, SOP HW-22, Rev. 4, August 2008.

The limited data validation included a review of completeness of all required deliverables; holding times; quality control (QC) results (instrument tunes, calibration standards, blanks, matrix spike recoveries, field duplicate analyses, laboratory control sample (LCS) recoveries, and surrogate/internal standard

recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

The validated analytical results are presented in Tables A-1 and A-2. Copies of the validated laboratory results (i.e., Form 1's) are presented in Attachment A. Copies of the chain-of-custodies, case narratives, and documentation supporting the qualification of data are presented in Attachment B. Only problems affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B or equivalent) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

IV. SAMPLE RECEIPT/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chain-of-custody (COC). All samples were analyzed within the required holding times, except for the PAH reextractions of samples HIMW-08I, -13D, and -20S. The PAH results for these samples were qualified 'J' or 'UJ' (see the Section V – Non-Conformances for further discussion). Documentation supporting the qualification of data (i.e., extraction log) is presented in Attachment B.

V. NON-CONFORMANCES

Surrogate Recoveries

The initial PAH analyses for samples HIMW-08I, -13D, and -20S exhibited poor surrogate percent recoveries (%R) (i.e., <10%), thus the initial analysis data was deemed unusable (Form 1s crossed out). The subsequent re-extractions/reanalyses exhibited compliant surrogate recoveries, but the re-extractions were performed 3-5 days outside holding time. Consequently, the PAH results for these samples were qualified 'J' or 'UJ' as previously noted above.

Documentation supporting the qualification of data (i.e., Form 2) is presented in Attachment B.

Internal Standard Recoveries

The initial PAH analysis for sample HIMW-08S exhibited a low internal standard (IS) %R for perylene-d12. The subsequent reanalysis exhibited similar IS results, thus substantiating matrix interference. The PAH results associated with this IS outlier were qualified 'UJ'.

Documentation supporting the qualification of data (i.e., Form 8) is presented in Attachment B.

Matrix Spike Recoveries

The BTEX MS/MSD analyses of sample HIMW-05D exhibited high/low %Rs, as well as high relative percent differences (RPDs). The laboratory believes these outliers may possibly be due to particulate matter present in the sample. The BTEX results for this sample were qualified 'J' or 'UJ'.

Documentation supporting the qualification of data (i.e., Form 3) is presented in Attachment B.

VI. SAMPLE RESULTS AND REPORTING

All sample results were reported in accordance with method requirements and were adjusted for sample size and dilution factors. BTEX and PAH results detected below the quantitation limits were qualified 'J' by the laboratory. The results reported from secondary dilution analyses were qualified 'D' by the laboratory.

Field duplicates were collected from monitoring well locations HIMW-12S and HIMW-20I, which exhibited good field and analytical precision.

VII. SUMMARY

All sample analyses were found to be compliant with the method and validation criteria, and the data are usable as reported, except for those results qualified 'J' or 'UJ' during the data validation, which should be considered conditionally usable. URS does not recommend the re-collection of any samples at this time.

Prepared By:	Peter R. Fairbanks, Senior Chemist	Date: 11/22/13
Reviewed By:	George E. Kisluk, Senior Chemist	Date: 11/22/13

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- D The sample results are reported from a separate secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Location ID			HIMW-003D	HIMW-0031	HIMW-003S	HIMW-005D	HIMW-005I
Sample ID			HIMW-03D	HIMW-03I	HIMW-03S	HIMW-05D	HIMW-5I
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)						V#3
Date Sampled			09/24/13	09/24/13	09/24/13	09/25/13	09/26/13
Parameter	Units	Criteria*				,	
Volatile Organic Compounds							
Benzene	UG/L		1 U	1 U	1 U	1 UJ	3
Ethylbenzene	UG/L	Ē	1 U	₃ 1 U	1 U	1 UJ	1
Toluene	UG/L	×	1 U	1 U	1 U	1 UJ	1 U
Xylene (total)	UG/L	•	1 U	1 U	1 U	19 J	81
Total BTEX	UG/L	100	ND	ND	ND	19	85
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	*	10 U	10 U	10 U	15	510 D
Acenaphthene	UG/L	å	10 U	10 U	10 U	10 U	15
Acenaphthylene	UG/L	•	10 U	10 U	10 U	9 J	220 DJ
Anthracene	UG/L	*	10 U	10 U	10 U	10 U	2 J
Benzo(a)anthracene	UG/L		10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	UG/L	2007	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	UG/L		10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	UG/L	*	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	UG/L	7387	10 U	10 U	10 U	10 U	10 U
Chrysene	UG/L	•	10 U	10 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	UG/L	*	10 U	10 U	10 U	10 U	10 U
Fluoranthene	UG/L		10 U	10 U	10 U	10 U	10 U
Fluorene	UG/L	*	10 U	10 U	10 U	2 J	25
Indeno(1,2,3-cd)pyrene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Naphthalene	UG/L		10 U	10 U	10 U	120 D	2,600 D
Phenanthrene	UG/L	-	10 U	10 U	10 U	10 U	13
Pyrene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	ND	146	3,385

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value, D - Result reported from a secondary dilution analysis.

Location ID			HIMW-005S	HIMW-008D	HIMW-008I	HIMW-008S	HIMW-012D
Sample ID			HIMW-05S	HIMW-08D	HIMW-081	HIMW-08S	HIMW-12D
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		•	:):	(#C)	363	-
Date Sampled			09/25/13	09/18/13	09/18/13	09/18/13	09/23/13
Parameter	Units	Criteria*					
Volatile Organic Compounds						8	
Benzene	UG/L		1 U	10	1 U	32	1 U
Ethylbenzene	NG/F	ā	1 U	1 U	1 U	1 U	1 U
Toluene	UG/L	¥	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	•	1 U	1 U	1 U	1 U	1 U
Total BTEX	UG/L	100	ND	ND	ND	32	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	×	10 U	10 U	10 UJ	10 U	10 U
Acenaphthene	UG/L	ā	10 U	10 U	10 UJ	10 U	10 U
Acenaphthylene	UG/L	•	10 U	10 U	10 UJ	2 J	10 U
Anthracene	UG/L	-	10 U	10 U	10 UJ	2 J	10 U
Benzo(a)anthracene	UG/L	-	10 U	10 U	10 UJ	10 U	10 U
Benzo(a)pyrene	UG/L		10 U	10 U	10 UJ	10 UJ	10 U
Benzo(b)fluoranthene	UG/L	•	10 U	10 U	10 UJ	10 UJ	10 U
Benzo(g,h,i)perylene	UG/L	×	10 U	10 U	10 UJ	10 UJ	10 U
Benzo(k)fluoranthene	UG/L	ā	10 U	10 U	10 UJ	10 UJ	10 U
Chrysene	UG/L	3	10 U	10 U	10 UJ	10 U	10 U
Dibenz(a,h)anthracene	UG/L	÷	10 U	10 U	10 UJ	10 UJ	10 U
Fluoranthene	UG/L	š	10 U	10 U	10 UJ	10 U	10 U
Fluorene	UG/L	÷	10 U	10 U	10 UJ	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L	*	10 U	10 U	10 UJ	10 UJ	10 U
Naphthalene	UG/L	8	10 U	10 U	10 UJ	10 U	10 U
Phenanthrene	UG/L	3	10 U	10 U	10 UJ	10 U	10 U
Pyrene	UG/L	8	10 U	10 U	10 UJ	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	ND	4	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $^{{\}sf U}$ - Not detected above the reported quantitation limit. ${\sf J}$ - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value, D - Result reported from a secondary dilution analysis.

Location ID			HIMW-0121	HIMW-012S	HIMW-012S	HIMW-013D	HIMW-013I
Sample ID			HIMW-12I	DUP092313	HIMW-12S	HIMW-13D	HIMW-131
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		•	(⊕):	•	•	16
Date Sampled			09/23/13	09/23/13	09/23/13	09/19/13	09/20/13
Parameter	Units	Criteria*		Field Duplicate (1-1)			
Volatile Organic Compounds							
Benzene	UG/L	2	31	1 U	1 U	3	140
Ethylbenzene	UG/L	3	1 U	1 U	1 U	1 U	2
Toluene	UG/L	(3.8)	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	•	2	1 U	1 U	1 U	11
Total BTEX	UG/L	100	33	ND	ND	3	153
Semivolatile Organic Compounds			4011	40.11	42.11		4
2-Methylnaphthalene	UG/L	*	10 U	10 U	10 U	10 UJ	10 U
Accepabilities	UG/L	•	36 34	10 U	10 U	4 J	7 J
Acenaphthylene Anthracene	UG/L	-	1 J	10 U	10 U	10 J	74
	UG/L		10 U	10 U	10 U	10 UJ	10 U
Benzo(a)anthracene Benzo(a)pyrene	UG/L		10 U	10 U	10 U	10 UJ	10 U
Benzo(a)pyrene Benzo(b)fluoranthene	UG/L		10 U	10 U	10 U	10 UJ	10 U
Benzo(g,h,i)perylene	UG/L		10 U	10 U	10 U	10 UJ	10 U
Benzo(k)fluoranthene	UG/L	-	10 U	10 U	10 U	10 UJ	10 U
Chrysene	UG/L		10 U	10 U	10 U	10 UJ	
Dibenz(a,h)anthracene	UG/L		10 U	10 U	10 U	10 UJ	10 U
Fluoranthene	UG/L	ļ	10 U	10 U	10 U	10 UJ	
	UG/L	283	22				10 U
Fluorene Indeno(1,2,3-cd)pyrene	UG/L			10 U	10 U	10 UJ	13
	UG/L	3#33	10 U	10 U	10 U	10 UJ	10 U
Naphthalene	UG/L	3 ≱ K	2 J	10 U	10 U	10 UJ	9 J
Phenanthrene	UG/L	9	12	10 U	10 U	10 UJ	10
Pyrene	UG/L	400	10 U	10 U	10 U	10 UJ	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	107	ND	ND	14	113

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

 $[\]mbox{U}$ - Not detected above the reported quantitation limit. $\mbox{J}\,$ - The reported concentration is an estimated value,

UJ - Not detected. The reported quantitation limit is an estimated value. D - Result reported from a secondary dilution analysis.

Location ID			HIMW-013S	HIMW-014D	HIMW-014I	HIMW-015D	HIMW-015I
Sample ID	HIMW-13S	HIMW-14D	HIMW-14I	HIMW-15D Groundwater	HIMW-15I		
Matrix			Groundwater		Groundwater	Groundwater	Groundwater
Depth Interval (f	t)				98 0	79-2	0(#)
Date Sampled			09/20/13	09/19/13	09/17/13	09/17/13	09/17/13
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	1 U	10	1 U	7
Ethylbenzene	UG/L		1 U	1 U	1	1 U	1 U
Toluene	UG/L		1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	×	1 U	10	1	1 U	2
Total BTEX	UG/L	100	ND	ND	12	ND	9
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	2	10 U	10 U	10 U	10 U	10 U
Acenaphthene	UG/L	•	10 U	10 U	9 J	10 U	8 J
Acenaphthylene	UG/L		10 U	10 U	12	10 U	16
Anthracene	UG/L	-	10 U	10 U	1 J	10 U	10 U
Benzo(a)anthracene	UG/L		10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	UG/L		10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	UG/L	-	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	UG/L	•	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	UG/L	±.	10 U	10 U	10 U	10 U	10 U
Chrysene	UG/L	<u> </u>	10 U	10 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	UG/L	(*)	10 U	10 U	10 U	10 U	10 U
Fluoranthene	UG/L	ista	10 U	10 U	10 U	10 U	10 U
Fluorene	UG/L	7.5	10 U	10 U	5 J	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L	(4)	10 U	10 U	10 U	10 U	10 U
Naphthalene	UG/L	858	10 U	10 U	10 U	10 U	10 U
Phenanthrene	UG/L	3	10 U	10 U	7 J	10 U	3 J
Pyrene	UG/L	(4)	10 U	10 U	10 U	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	34	ND	27

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit, |J| - The reported concentration is an estimated value,

UJ - Not detected. The reported quantitation limit is an estimated value. D - Result reported from a secondary dilution analysis.

Location ID			HIMW-0201	HIMW-020I	HIMW-020S	HIMW-022	HIMW-023
Sample ID			DUP-092013	HIMW-20I	HIMW-20S	HIMW-22	HIMW-23
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		-	-		(* -)	ž –
Date Sampled			09/20/13	09/20/13	09/20/13	09/25/13	09/23/13
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Toluene	UG/L	5	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L		3	3	1 U	1 U	1 U
Total BTEX	UG/L	100	3	3	ND	ND	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	3	10 U	10 U	10 UJ	10 U	10 U
Acenaphthene	UG/L	-	10 U	10 U	10 UJ	10 U	10 U
Acenaphthylene	UG/L	-	2 J	3 J	10 UJ	10 U	10 U
Anthracene,	UG/L	1 5	10 U	10 U	10 UJ	10 U	10 U
Benzo(a)anthracene	UG/L	-	10 U	10 U	10 UJ	10 U	10 U
Benzo(a)pyrene	UG/L		10 U	10 U	10 UJ	10 U	10 U
Benzo(b)fluoranthene	UG/L	#A/	10 U	10 U	10 UJ	10 U	10 U
Benzo(g,h,i)perylene	UG/L	(4)	10 U	10 U	10 UJ	10 U	10 U
Benzo(k)fluoranthene	UG/L		10 U	10 U	10 UJ	10 U	10 U
Chrysene	UG/L	19 /3	10 U	10 U	10 UJ	10 U	10 U
Dibenz(a,h)anthracene	UG/L	13/	10 U	10 U	10 UJ	10 U	10 U
Fluoranthene	UG/L	5 + 5	10 U	10 U	10 UJ	10 U	10 U
Fluorene	UG/L	:2:	10 U	10 U	10 UJ	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L	31	10 U	10 U	10 UJ	10 U	10 U
Naphthalene	UG/L		2 J	2 J	3 J	10 U	10 U
Phenanthrene	UG/L	=	10 U	10 U	2 J	10 U	10 U
Pyrene	UG/L		10 U	10 U	10 UJ	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	4	5	5	ND	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown,

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value.

 $UJ-Not\ detected.\ The\ reported\ quantitation\ limit\ is\ an\ estimated\ value,\ D-Result\ reported\ from\ a\ secondary\ dilution\ analysis.$

Location ID			HIMW-024	HIMW-025
Sample ID	HIMW-24	HIMW-25		
Matrix			Groundwater	Groundwater
Depth Interval (f			-	ř
Date Sampled			09/26/13	09/25/13
Parameter	Units	Criteria*		
Volatile Organic Compounds				
Benzene	UG/L	€	11	1 U
Ethylbenzene	UG/L	4	1 U	1 U
Toluene	UG/L		1 U	10
Kylene (total)	UG/L	<u>\$</u>	2	1 U
Total BTEX	UG/L	100	13	ND
Semivolatile Organic Compounds				
2-Methylnaphthalene	UG/L	ž.	10 U	10 U
Acenaphthene	UG/L	*	10 U	10 U
Acenaphthylene	UG/L	=	1 J	10 U
Anthracene	UG/L		10 U	10 U
Benzo(a)anthracene	UG/L	-	10 U	10 U
Benzo(a)pyrene	UG/L		10 U	10 U
Benzo(b)fluoranthene	UG/L		10 U	10 U
Benzo(g,h,i)perylene	UG/L		10 U	10 U
Benzo(k)fluoranthene	UG/L		10 U	10 U
Chrysene	UG/L		10 U	10 U
Dibenz(a,h)anthracene	UG/L		10 U	10 U
Fluoranthene	UG/L	•	10 U	10 U
Fluorene	UG/L	:51	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L		10 U	10 U
Naphthalene	UG/L	(4)	4 J	10 U
Phenanthrene	UG/L	(*)	2 J	10 U
Pyrene	UG/L	3)	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	7	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, tIRS 2008

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit. J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value. D - Result reported from a secondary dilution analysis.

Location ID		FIELDQC	FIELDQC	FIELDQC	FIELDQC	FIELDQC
Sample ID		TB 091913	TB 092013	TB 092413	FB092613	HS-FB092613
Matrix		Water Quality	Water Quality	Water Quality	Water Quality	Water Quality
Depth Interval (ft)			(a)		(#C	
Date Sampled		09/19/13	09/20/13	09/24/13	09/26/13	09/26/13
Parameter	Units	Trip Blank (1-1)	Trip Blank (1-1)	Trip Blank (1-1)	Field Blank (1-1)	Field Blank (1-1)
Volatile Organic Compounds						
Benzene	UG/L	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	UG/L	1 U	1 U	1 U	1 U	1 U
Toluene	UG/L	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	1 U	1 U	1 U	1 U	1 U
Total BTEX	UG/L	ND	ND	ND	ND	ND
Semivolatile Organic Compounds						
2-Methylnaphthalene	UG/L	NA	NA	NA	10 U	10 U
Acenaphthene	UG/L	NA	NA	NA	10 U	10 U
Acenaphthylene	UG/L	NA	NA	NA	10 U	10 U
Anthracene	UG/L	NA	NA	NA	10 U	10 U
Benzo(a)anthracene	UG/L	NA	NA	NA	10 U	10 U
Benzo(a)pyrene	UG/L	NA	NA	NA	10 U	10 U
Benzo(b)fluoranthene	UG/L	NA	NA	NA	10 U	10 U
Benzo(g,h,i)perylene	UG/L	NA	NA	NA	10 U	10 U
Benzo(k)fluoranthene	UG/L	NA	NA	NA	10 U	10 U
Chrysene	UG/L	NA	NA	NA	10 U	10 U
Dibenz(a,h)anthracene	UG/L	NA	NA	NA	10 U	10 U
Fluoranthene	UG/L	NA	NA	NA	10 U	10 U
Fluorene	UG/L	NA	NA	NA	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L	NA	NA	NA	10 U	10 U
Naphthalene	UG/L	NA	NA	NA	10 U	10 U
Phenanthrene	UG/L	NA	NA	NA	10 U	10 U
Pyrene	UG/L	NA	NA	NA	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	NA	NA	NA	ND	ND

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit. NA - The sample was not analyzed for this parameter.

Location ID		FIELDQC
Sample ID	TB 092613	
Matrix		Water Quality
Depth Interval (ft)		
Date Sampled		09/26/13
Parameter	Units	Trip Blank (1-1)
Volatile Organic Compounds		
Benzene	UG/L	1 U
Ethylbenzene	UG/L	1 U
Toluene	UG/L	1 U
Xylene (total)	UG/L	1 U
Total BTEX	UG/L	ND
Semivolatile Organic Compounds		
2-Methylnaphthalene	UG/L	NA
Acenaphthene	UG/L	NA
Acenaphthylene	UG/L	NA
Anthracene	UG/L	NA
Benzo(a)anthracene	UG/L	NA
Benzo(a)pyrene	UG/L	NA
Benzo(b)fluoranthene	UG/L	NA
Benzo(g,h,i)perylene	UG/L	NA
Benzo(k)fluoranthene	UG/L	NA
Chrysene	UG/L	NA
Dibenz(a,h)anthracene	UG/L	NA
Fluoranthene	UG/L	NA
Fluorene	UG/L	NA
ndeno(1,2,3-cd)pyrene	UG/L	NA
Naphthalene	UG/L	NA
Phenanthrene	UG/L	NA
Pyrene	UG/L	NA
Total Polynuclear Aromatic Hydrocarbons	UG/L	NA

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit. NA - The sample was not analyzed for this parameter.

ATTACHMENT A VALIDATED FORM 1'S

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

EPA SAMPLE NO.

HIMW-03S

Lab Name:	H2M LABS IN	<u>1C</u>	Contra	at:	
Lab Code:	10478	Case No.: E	KEY-URS SAS	No.:	SDG No.: KEY-URS174
Matrix: (so	il/water)	WATER		Lab Sample ID:	1309D88-003A
Sample wt/v	ol: <u>5</u>	(g/mL)	<u>мг.</u>	Lab File ID:	13\G21521.
Level: (1	ow/med)	TOM		Date Received:	09/24/13
% Moisture:	not dec.			Date Analyzed:	10/02/13
GC Column:	Rtx-624	ID:	.18 (mm)	Dilution Factor:	1.00

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
71-43-2	Benzene	1	Ū
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	U

(μL) Soil Aliquot Volume (μL)

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO

HIMW-03I

Lab Name: H2M LABS	INC Contra	ict:	
Lab Code: 10478	Case No.: KEY-URS SAS	No.:	SDG No.: KEY-URS174
Matrix: (soil/water)	WATER	Lab Sample ID:	1309D88-002A
Sample wt/vol: 5	(g/ml) <u>Wl</u>	Lab File ID:	713\G21474
Level: (low/med)	TOM	Date Received:	09/24/13
% Moisture: not dec.		Date Analyzed:	09/28/13
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
g_13 Water at 15-7	(57.)	Sail Migrat Wol	umo (uT.)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xvlene (total)	1	บ

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

EPA	SAMPLE	NO

HIMW-03D

name: name:	INC CONC.	Lact:	
Lab Code: 10478	Case No.: KEY-URS SA	S No.:	SDG No.: KEY-URS174
Matrix: (soil/water)	WATER	Lab Sample ID:	1309D88-001A
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	713\G21473
Level: (low/med)	TOM	Date Received:	09/24/13
% Moisture: not dec.		Date Analyzed:	09/28/13
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00

CONCENTRATION UNITS:

(µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-05S

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-002A

Sample wt/vol: $\underline{5}$ (g/mL) ML Lab File ID: 13\G21531.

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND (1	g/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	Ū
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	Ü
1330-20-7	Xylene (total)	1	Ū

VOLATILE ORGANICS ANALYSIS DATA SHEET

אכוים	SAMPLE	NTO
EFA	OFFITTE LIE	MU.

HIMW-5I

Lab	Name:	H2M LABS	INC	Contract:	

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-006A

Sample wt/vol: $\frac{5}{2}$ (g/mL) ML Lab File ID: $\frac{13}{G21534}$.

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (μL) Soil Aliquot Volume (μL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L Q
71-43-	2 , Benzene	3
108-88-3	Toluene	1 U
100-41-4	Ethylbenzene	1 1
1330-20-	Xylene (total)	81

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.

HIMW-05D

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-001A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13}$ \G21528.

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L o	r pg/Kg) UG	/L Q
71-43	2 Benzene		1	ט 🗂 ד
108-88-	3 Toluene		1	U
100-41-	4 Ethylbenzene		1	ט
1330-20-	7 Xylene (total)		19	

11/15/13

VOLATILE ORGANICS ANALYSIS DATA SHEET

T DA	SAMPLE	NO
LPA	SMAPLE	NO.

HIMW-08S

Lab	Name:	HZM LABS I	.NC	C	Jiiclacc.	-		
Lab	Code:	н2м	Case No.:	KEY-URS	SAS No.:		SDG No.:	KEY-URS173

Matrix: (soil/water) WATER Lab Sample ID: 1309B92-003A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 713\G21458

Level: (low/med) LOW Date Received: 09/19/13

% Moisture: not dec. Date Analyzed: 09/27/13

GC Column: Rtx-624 ID: 18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	32	
108-88-3	Toluene	1	Ü
100-41-4	Ethylbenzene	1	Ū
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

FDA	SAMPLE	NO
LFA	SHITTE	NO.

HIWM-08I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Matrix: (soil/water) WATER Lab Sample ID: 1309B92-002A

Sample wt/vol: 5 (g/mL) ML Lab File ID: $713\G21457$

Level: (low/med) LOW Date Received: 09/19/13

% Moisture: not dec. Date Analyzed: 09/27/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	µg/L or µg/Kg) <u>UG/L</u>	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

77 77 7	CALINTE	270
LEM	SAMPLE	NO.

HIMW-08D

Lab Name: H2M LABS I	Contra		
Lab Code: H2M	Case No.: KEY-URS SAS	No.:	SDG No.: KEY-URS173
Matrix: (soil/water)	WATER	Lab Sample ID:	1309B92~001A
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	713\G21456
Level: (low/med)	LOW	Date Received:	09/19/13
% Moisture: not dec.		Date Analyzed:	09/27/13
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Cail Butwach Walama	(nt.)	Soil Alienat Vol:	(Tri)

CAS NO. COMPOUND		(pg/L or pg/Kg) UG/L		
71-43-2	Benzene	1 1	U	
108-88-3	Toluene	1	บ	
100-41-4	Ethylbenzene	1	U	
1330-20-7	Xvlene (total)	1	U	

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

EPA SAMPLE NO.

HIMW-12S

Lab Name: H2M LABS INC Contract: Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174 Lab Sample ID: 1309D88-006A Matrix: (soil/water) WATER Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13}$ \G21524. Level: (low/med) LOW Date Received: 09/24/13 Date Analyzed: 10/02/13 % Moisture: not dec. GC Column: Rtx-624 ID: 18 (mm) Dilution Factor: 1.00 (μL) Soil Aliquot Volume (μL)

CAS NO.		COMPOUND		(µg/L	or µg/Kg)	UG/L	Q	
	71-43-2	Benzene	era	4	· · · · i	CALL PLANE AND	U	
	108-88-3	Toluene			1		U	
	100-41-4	Ethylbenzene			1		U	
1	1330-20-7	Xylene (total)			1		Ū	!

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DUP092313 (HIMW-125)

Lab Name:	H2M LABS I	NC	Contrac	t:		
Lab Code:	10478	Case No.: KEY-	JRS SAS N	No.:	SDG No.:	KEY-URS174
Matrix: (so	il/water)	WATER	1	Lab Sample ID:	1309D88-0	08A
Sample wt/v	ol: <u>5</u>	(g/mL) ML	1	Lab File ID:	13\G21526	<u>.</u>
Level: (1	ow/med)	TOM	1	Date Received:	09/24/13	
% Moisture:	not dec.		1	Date Analyzed:	10/02/13	
GC Column:	Rtx-624	ID: <u>.18</u>	(mm)	Dilution Factor:	1.00	
Soil Extrac	t Volume:	(p	L)	Soil Aliquot Vol	ume	— ^(pL)
				CONCE	NTRATION UN	IITS:
CAS NO.		COMPOUND		(ng/L	or ug/Kg) I	IG/L O

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	υ
100-41-4	Ethylbenzene	1	ט
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

EPA SAMPLE NO.

HIMW-12I

 Lab Name:
 H2M LABS INC
 Contract:

 Lab Code:
 10478
 Case No.:
 KEY-URS SAS No.:
 SDG No.:
 KEY-URS174

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 1309D88-005A

 Sample wt/vol:
 5
 (g/mL) ML
 Lab File ID:
 13\G21523.

 Level:
 (low/med)
 LOW
 Date Received:
 09/24/13

 % Moisture:
 not dec.
 Date Analyzed:
 10/02/13

 GC Column:
 Rtx-624
 ID:
 .18 (mm)
 Dilution Factor:
 1.00

CONCENTRATION UNITS:

CAS	NO.	COMPOUND (µg/	L or µg/Kg) UG/L	Q
1	71-43-2	Benzene	31	
4	108-88-3	Toluene	1.	U
ikiaw sa	100-41-4	Ethylbenzene	1	ט
	1330-20-7	Xylene (total)	2	

(μL) Soil Aliquot Volume (μL)

12

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC

SAMPLE	

HIMW-12D

Lab Code: <u>10478</u>	Case No.:	KEY-URS	SAS No.:	SDG No.: KEY-URS174		
Matrix: (soil/water)	WATER		Lab Sample ID:	1309D88-004A		

Contract:

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13}$ \G21522.

Level: (low/med) LOW Date Received: 09/24/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene		U
108-88-3	Toluene	1	บ
100-41-4	Ethylbenzene	1	บ
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13S

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Matrix: (soil/water) WATER Lab Sample ID: 1309C54-002A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{713}$ \G21466

Level: (low/med) LOW Date Received: 09/20/13

% Moisture: not dec. Date Analyzed: 09/27/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q	
71-43-2	Benzene	1	U	
108-88-3	Toluene	1	Ū	
100-41-4	Ethylbenzene	1	U	
1330-20-7	Xylene (total)		U	

VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE	

HIMW-13I

Lab Name: H21	M LABS INC	Con	itract:	
Lab Code: H2h	Case No	.: KEY-URS	SAS No.:	SDG No.: KEY-URS173
Matrix: (soil/	(water) <u>WATI</u>	IR.	Lab Sample ID:	1309C54-001A
Sample wt/vol:	<u>5</u> (ç	J/mL) ML	Lab File ID:	713\G21465
Level: (low/	/med) <u>LOW</u>		Date Received:	09/20/13
% Moisture: no	ot dec.		Date Analyzed:	09/27/13
GC Column: R	tx-624	ID: <u>.18</u> (mm) Dilution Factor:	1.00
Soil Extract V		(µL)	Soil Aliquot Vol	.ume (µL)

CAS NO.		COMPOUND			(µg/	L or µg/Kg) UG/L	Q
g siamone contra on the	71-43-2	Benzene	P			140	
	108-88-3	Toluene	3	W 72/ H22		was remarkated as a	U
	100-41-4	Ethylbenzene	22	11 22 27	- 4	2	
1	330-20-7	Xylene (total)				11	

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

EPA SAMPLE NO.

HIMW-13D

 Lab Name:
 H2M LABS INC
 Contract:

 Lab Code:
 H2M
 Case No.:
 KEY-URS
 SAS No.:
 SDG No.:
 KEY-URS173

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 1309B92-004A

 Sample wt/vol:
 5
 (g/mL) ML
 Lab File ID:
 713\G21459

 Level:
 (low/med)
 LOW
 Date Received:
 09/19/13

 % Moisture:
 not dec.
 Date Analyzed:
 09/27/13

 GC Column:
 Rtx-624
 ID:
 .18 (mm)
 Dilution Factor:
 1.00

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	, Q
71-43-2	Benzene	3	
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xvlene (total)	1	U

(μL) Soil Aliquot Volume (μL)

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

100000000000000000000000000000000000000		200000
EPA	SAMPLE	NO.

HIMW-14I

Contract: Lab Name: H2M LABS INC Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173 Lab Sample ID: 1309B92-006A Matrix: (soil/water) WATER Lab File ID: 713\G21461 Sample wt/vol: 5 (g/mL) ML Date Received: 09/19/13 Level: (low/med) LOW Date Analyzed: 09/27/13 % Moisture: not dec. GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00 (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	10	
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	
1330-20-7	Xylene (total)	1	

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

7777	CONTRACTOR OF THE PARTY OF THE	NTO
LPA	SAMPLE	NO.

HIMW-14D

Lab Name:	H2M LABS IN	C	CC	ntract:			
Lab Code: I	H2M	Case No.:	KEY-URS	SAS No.		SDG No.:	KEY-URS173
Matrix: (soi	il/water)	WATER		Lab	Sample ID:	1309B92-0	05A
Sample wt/vo	ol: <u>5</u>	(g/mL	MT	Lab	File ID:	713\G2146	<u>D</u>
Level: (1c	ow/med)	TOM		Dat	e Received:	09/19/13	81
% Moisture:	not dec.			Dat	e Analyzed:	09/27/13	
GC Column:	Rtx-624	ID:	.18 (m	m) Dil	ution Factor:	1.00	

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \overline{U} G/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Yylene (total)	1	U

(μL) Soil Aliquot Volume (μL)

VOLATILE ORGANICS ANALYSIS DATA SHEET

TO DA	SAMPLE	MO
EFF	SMITETIE	NO

HIMW-15I

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID: 1309B92-008A

Sample wt/vol: 5 (g/mL) ML

Lab File ID: 713\G21463

Level: (low/med) LOW

Date Received: 09/19/13

% Moisture: not dec.

Date Analyzed: 09/27/13

GC Column: Rtx-624

ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(μL) Soil Aliquot Volume (μL)

CAS NO.		COMPOUND	(µg/L or µg/Kg) UG/L	Q
70	1-43-2	Benzene	7	
108	8-88-3	Toluene	1	Ü
100	0-41-4	Ethylbenzene	1	Ü
1330	0-20-7	Xylene (total)		L

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-15D

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Matrix: (soil/water) WATER Lab Sample ID: 1309B92-007A

Sample wt/vol: $\frac{5}{2}$ (g/mL) ML Lab File ID: $\frac{713}{621462}$

Level: (low/med) LOW Date Received: 09/19/13

% Moisture: not dec. Date Analyzed: 09/27/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	Ü
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	ט
1220-20-7	Yulene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-20S

Contract: Lab Name: H2M LABS INC Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173 Matrix: (soil/water) WATER Lab Sample ID: 1309C54-004A Lab File ID: 713\G21470 Sample wt/vol: 5 (g/mL) ML Date Received: 09/20/13 Level: (low/med) LOW Date Analyzed: 09/27/13 % Moisture: not dec. GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (μ L) Soil Aliquot Volume (μ L)

CAS NO. COMPOUND		(µg/L or µg/Kg) <u>UG/L</u>	Q
71-43	-2 Benzene	1	Ü
108-88	-3 Toluene	1	U
100-41	4 Ethylbenzene	1	U
1330-20		1	ū

EPA	SAMPLE	NO

HIMW-20I

Lab Name:	H2M LABS INC	Contract:	
-----------	--------------	-----------	--

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Lab Sample ID: 1309C54-003A Matrix: (soil/water) WATER

Lab File ID: 713\G21469 Sample wt/vol: 5 (g/mL) ML

Date Received: 09/20/13

Level: (low/med) LOW

Date Analyzed: 09/27/13 % Moisture: not dec.

ID: .18 (mm) Dilution Factor: 1.00 GC Column: Rtx-624

(µL) Soil Aliquot Volume (µL) Soil Extract Volume:

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	ับ
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	3	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DUP-092013 (HIMW-020I)

ab Name:	H2M LABS INC	Contract:	_
----------	--------------	-----------	---

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Matrix: (soil/water) WATER Lab Sample ID: 1309C54-006A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 713\G21472

Level: (low/med) LOW Date Received: 09/20/13

% Moisture: not dec. Date Analyzed: 09/28/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	3	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.

HIMW-22

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-003A

Sample wt/vol: $\frac{5}{2}$ (g/mL) ML Lab File ID: $\frac{13}{21532}$.

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.		COMPOUND	(µg/L	or µg/Kg) UG	/L	Q
71-43-	2] I	Benzene	1	1		U
108-88-	3 1	Foluene	3	1		U
100-41-	4 I	Sthylbenzene		1	i	U
1330-20-	7 : 2	Kylene (total)		1		U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-23

Lab Name: H2M LABS INC Contract:

Matrix: (soil/water) WATER Lab Sample ID: 1309D88-007A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13\backslash G21525}$.

Level: (low/med) LOW Date Received: 09/24/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	บ
100-41-4	Ethylbenzene	1	Ū
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO
-----	--------	----

HIMW-24

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-004A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 13\G21520.

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx~624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q	
71-43-2	Benzene	11		
108-88-3	Toluene	1	U	
100-41-4	Ethylbenzene	1	Ū	
1330-20-7	Xylene (total)	2		

VOLATILE ORGANICS ANALYSIS DATA SHEET

EDA	SAMPLE	NTO
LEA	SMPIP LIE	NO

HIMW-25

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-005A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 13\G21533.

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND (pe	g/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	υ

HIMW-03S

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309D88-003B

Sample wt/vol: $\underline{1000}$ (g/mL) \underline{ml} Lab File ID: $\underline{3}$ N61088.D

Level: (low/med) LOW Date Received: 09/24/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/25/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/02/13

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ___ Extraction: (Type) SEPF

CONCENTRATION UNITS:

		CONCENTRATION ONLIS:	
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	Ü
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ü
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

HIMW-03I

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309D88-002B

Sample wt/vol: $\underline{1000}$ (g/mL) \underline{ml} Lab File ID: $\underline{3}$ \text{N61087.D}

Level: (low/med) LOW Date Received: 09/24/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/25/13

Concentrated Extract Volume: 1000 (μ L) Date Analyzed: 10/02/13

Injection Volume: $\underline{2}$ (µL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) \underline{N} pH: ____ Extraction: (Type) \underline{SEPF}

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	Ū
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	Ū
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	Ü
129-00-0	Pyrene	10	Ü
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193~39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ü

	HIMW-03D	
--	----------	--

Lab Name:	H2M LABS INC	Contract:
-----------	--------------	-----------

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309D88-001B

Sample wt/vol: $\underline{1000}$ (g/mL) \underline{ml} Lab File ID: $\underline{3}$ \N61086.D

Level: (low/med) LOW Date Received: 09/24/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/25/13

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{10/02/13}$

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	Ū
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	Ü
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ū
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

	717
HIMW-05S	

Lab Name	: H2M LABS INC	Contract:
----------	----------------	-----------

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-002B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $3\N61168.D$

Level: (low/med) <u>LOW</u> Date Received: <u>09/26/13</u>

% Moisture: Decanted: (Y/N) N Date Extracted: 09/30/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/04/13

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ___ Extraction: (Type) SEPF

CONCENTRATION UNITS:

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	Ü
129-00-0	Pyrene	10	U
56-55 - 3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	Ū
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-5I	
---------	--

Lab	Name:	H2M LABS INC	Contract:	

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-006B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 3\N61172.D

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/30/13

Concentrated Extract Volume: 1000 (μL) Date Analyzed: 10/04/13

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ___ Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	2600 930	E
91-57-6	2-Methylnaphthalene	5/0 310	EI
208-96-8	Acenaphthylene	220 170	B.D.
83-32-9	Acenaphthene	15	
86-73-7	Fluorene	25	
85-01-8	Phenanthrene	13	
120-12-7	Anthracene	2	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ü

(1) Cannot be separated from Diphenylamine

11/15/13

HIMW-5IDL

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID:

1309F64-006BDL

Sample wt/vol: 1000 (g/mL)ML Lab File ID: 3\N61227.D

Level: (low/med) LOW Date Received:

09/26/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

09/30/13

Concentrated Extract Volume:

1000 (µL) Date Analyzed:

10/08/13

Injection Volume:

(µL)

Dilution Factor:

40.00

GPC Cleanup:

(Y/N) N

pH:

Extraction: (Type) SEPF

CONCENTRATION UNITS: (µg/L or µg/Kg) UG/L

CAS NO.

COMPOUND

91-20-3	Naphthalene		2600	D
91-57-6	2-Methylnaphthalene		510	D
208-96-8	Acenaphthylene		220	DJ
83-32-9	Acenaphthene		400	U
86-73-7	Fluorene	/	400	U
85-01-8	Phenanthrene		400	Ū

	11dozene	400	U
85-01-8	Phenanthrene	400	Ū
120-12-7	Anthracene	400	U
206-44-0	Fluoranthene	400	U
129-00-0	Pyrene	400	U
56-55-3	Benzo(a) anthracene	400	U
218-01-9	Chrysene	400	U
205-99-2	Benzo(b) fluoranthene	400	U
207-08-9	Benzo(k) fluoranthene	400	Ū
50-32-8	Benzo(a) pyrene	400	U
193-39-5	Indeno(1,2,3-cd)pyrene	400	U
53-70-3	Dibenzo(a,h)anthracene	400	U
191-24-2	Benzo(g,h,i)perylene	400	U

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-05D

Lab	Name:	H2M LABS INC	Contract:	

Lab Code: 10478 Case No.: KEY-URS SAS No.:

LOW

SDG No.: KEY-URS174

Matrix: (soil/water) WATER

Lab Sample ID:

1309F64-001B

Sample wt/vol:

1000

Lab File ID:

3\N61165.D

Level: (low/med)

.

Date Received:

09/26/13

% Moisture:

Decanted: (Y/N)

09/30/13

Concentrated Extract Volume:

1000 (µL)

(g/mL)

ml

Date Extracted:
Date Analyzed:

10/04/13

Injection Volume:

2 (µL)

Dilution Factor:

1.00

GPC Cleanup:

(Y/N) <u>N</u>

pH: ___

Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(µg/L or µg/Kg) UG/L

į Q

		1237 237 37	~
91-20-3	Naphthalene	100 100	Ei
91-57-6	2-Methylnaphthalene	15	
208-96-8	Acenaphthylene	9	J
83-32-9	Acenaphthene	10	Ū
86-73-7	Fluorene	2	J
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	Ŭ
129-00-0	Pyrene	10	Ŭ
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ŭ
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

11/13/13

HIMW-05DDL

Lab Name: H2M LABS INC

Contract:

Lab Code: 10478

Case No.: KEY-URS

SAS No.:

SDG No.: KEY-URS174

Matrix: (soil/water) WATER

Lab Sample ID:

1309F64-001BDL

Sample wt/vol:

(g/mL) ML Lab File ID:

3\N61226.D

Level:

(low/med)

Date Received:

09/26/13

% Moisture:

Decanted: (Y/N)

N

Date Extracted:

09/30/13

Concentrated Extract Volume:

91-20-3

91-57-6

83-32-9

86-73-7

85-01-8

120-12-7

206-44-0

129-00-0

218-01-9

205-99-2

207-08-9 50-32-8

193-39-5

53-70-3

191-24-2

56-55-3

208-96-8

1000 (µL)

Date Analyzed:

10/08/13

Injection Volume:

2 (UL)

Dilution Factor:

2.00

GPC Cleanup:

(Y/N) N

pH:

Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.

COMPOUND

Acenaphthylene

Acenaphthene

Phenanthrene

Fluoranthene

Benzo(a)pyrene

Benzo(a) anthracene

Benzo(b) fluoranthene Benzo(k) fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenzo (a, h) anthracene

Benzo(g,h,i)perylene

Anthracene

Pyrene

Chrysene

Fluorene

2-Methylnaphthalene

Naphthalene

(µg/L or µg/Kg) UG/L

100	/	
	120	D
	17	DJ
/	10	DJ
/	20	U
1	20	U
	20	Ū
	20	U
	20	U
	20	U
	20	Ū
	20	Ū
	20	U
	20	υ
	20	II

20

20

20

(1) Cannot be separated from Diphenylamine

U

U

Q

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-08S

Lab	Name:	H2M LABS INC	Contract:

9-7-2

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309B92-003B

Sample wt/vol:

Lab Code: H2M

1000

2

(g/mL) ml Lab File ID:

3\N60963.D

Level:

(low/med)

Date Received:

09/19/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

Dilution Factor:

09/23/13

Concentrated Extract Volume:

1000 (µL)

N

Date Analyzed:

09/28/13

Injection Volume:

(µL)

FOM

-

1.00

GPC Cleanup: (Y/N) N

pH: ____

Extraction: (Type) SEPF

CONCENTRATION UNITS:

10

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	2	J
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	2	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U

(1) Cannot be separated from Diphenylamine

191-24-2 Benzo(g,h,i)perylene

EPA SAMPLE NO.

HIMW-08SRE

Lab Name: H2M LABS INC

Contract:

Lab Code: 10478 Case No.: KEY-URS

SAS No.: Lab Sample ID:

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

1309B92-003BRE

Sample wt/vol:

1000

(g/mL)

Lab File ID:

3\N61321.D

Level: (low/med)

Concentrated Extract Volume:

Date Received:

09/19/13

% Moisture:

Date Extracted:

Decanted: (Y/N)

Date Analyzed:

09/23/13 10/11/13

1000 (µL)

LOW

1.00

Injection Volume: 2

(pL)

Dilution Factor:

GPC Cleanup: (Y/N) N

pH:

Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(µg/L or µg/Kg) UG/L

		(P3/ = 02 P3/ 13/ 00/ E	¥
91-20-3	Naphthalene	10/	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	/2	J
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	Ü
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	1 1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo (a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ü
53-70 - 3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

EPA SAMPLE NO.

HIMW-08IRE

Lab Name:	H2M LABS INC	Contract:
-----------	--------------	-----------

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Matrix: (soil/water) WATER Lab Sample ID: 1309B92-002BRE

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $3\N61162.D$

Level: (low/med) \underline{LOW} Date Received: $\underline{09/19/13}$

% Moisture: Decanted: (Y/N) N Date Extracted: 09/30/13

Concentrated Extract Volume: $\underline{1000}$ (μ L) Date Analyzed: $\underline{10/04/13}$

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

		001.021.111111011 0111101	
CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	10	U J
91-57-6	2-Methylnaphthalene	10	U 1
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	י ט

(1) Cannot be separated from Diphenylamine

1113

EPA SAMPLE NO.

HIMW-08I

Lab Name: H2M LABS INC

Contract:

SAS No.: _____ Case No.: KEY-URS

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309B92-002B

Sample wt/vol:

Lab Code: H2M

1000

(g/mL) ml Lab File ID:

3\N60948.D

Level:

(low/med)

91-20-3

91-57-6

208-96-8

LOW

Date Received:

09/19/13

% Moisture:

Decanted: (Y/N)

(µL)

Date Extracted:

09/23/13

Concentrated Extract Volume:

1000

Date Analyzed:

09/27/13

Injection Volume:

(pL) 2

Dilution Factor:

1.00

GPC Cleanup:

(A/N) <u>N</u>

pH:

Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.

COMPOUND Naphthalene

Acenaphthylene

2-Methylnaphthalene

(µg/L or µg/Kg) UG/L Q

10 U 10 U

83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-08D

Lab	Name:	H2M LABS INC	Contract:	
-----	-------	--------------	-----------	--

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309B92-001B

Sample wt/vol:

1000

(g/mL) ml

Lab File ID:

3\N60947.D

Level: (low/med)

LOW

Date Received:

09/19/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

09/27/13

Injection Volume: $2 (\mu L)$

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N

pH: ____

Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS	NO.

COMPOUND

(µg/L or µg/Kq) UG/L O

		(M2) 7 02 M2/ W3/ 00/ 1	~
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	Ū
208-96-8	Acenaphthylene	10	Ū
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthragene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1;2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

HIMW-12S

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309D88-006B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 3\N61091.D

Level: (low/med) LOW Date Received: 09/24/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/25/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/02/13

Injection Volume: $\underline{2}$ (μ L) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) SEPF

CAS NO.	COMPOUND	($\mu g/L$ or $\mu g/Kg$) UG/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

DUP092313 (HIMW-125)

ab Name: H2M LABS INC	Contract:	
-----------------------	-----------	--

LOW

Level: (low/med)

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309D88-008B

Date Received:

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $3\N61093.D$

Sample we/vol: 1000 (g/mil) mil 1000 1110 12.

% Moisture: Decanted: (Y/N) N Date Extracted: 09/25/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/02/13

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) SEPF

CONCENTRATION UNITS:

09/24/13

		CONCENTRATION UNITS.	
CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	Ü
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b)fluoranthene	10	Ŭ
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	υ
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

⁽¹⁾ Cannot be separated from Diphenylamine

OLM04.2

SDG No.: KEY-URS174

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-12I

Contract: Lab Name: H2M LABS INC

Lab Code: 10478

Case No.: KEY-URS SAS No.: Matrix: (soil/water) WATER Lab Sample ID: 1309D88-005B

Sample wt/vol: Lab File ID: 1000 (g/mL) ml 3\N61090.D

Level: (low/med) LOW Date Received: 09/24/13

% Moisture: Decanted: (Y/N) Date Extracted: 09/25/13 N

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/02/13

Injection Volume: Dilution Factor: 1.00 <u>2</u> (µL)

Extraction: (Type) SEPF GPC Cleanup: (Y/N) N pH: ____

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	2	J
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	34	
83-32-9	Acenaphthene	36	
86-73-7	Fluorene	22	
85-01-8	Phenanthrene	12	
120-12-7	Anthracene	1 1	J
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(q,h,i)pervlene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-12D

Lab Name:	H2M LABS INC	Contract:
-----------	--------------	-----------

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309D88-004B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $3\N61089.D$

Level: (low/med) Date Received: 09/24/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/25/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/02/13

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	Ü
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13S

Lab	Name:	H2M LABS INC	Contract:	

SAS No.:_____ Case No.: KEY-URS

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309C54-002B

Sample wt/vol:

Lab Code: H2M

1000

Lab File ID: ml

3\N60955.D

Level: (low/med)

LOW

(g/mL)

Date Received:

09/20/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000 (µL)

N

Date Analyzed:

09/27/13

Injection Volume: $\frac{2}{2}$ (µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) SEPF

CONCENTRATION UNITS:

g) <u>UG/L</u>	U U Q
	U
	U
	U
	U
	U
	U
	U
	U
	U
	U
	U
	U
	U
	U
	U
	Ü

⁽¹⁾ Cannot be separated from Diphenylamine

EPA SAMPLE NO.

HIMW-13I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS

SAS No.: _____

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309C54-001B

Sample wt/vol:

1000

(g/mL) ml

Lab File ID:

3\N60954.D

Level: (low/med)

LOW

Date Received:

09/20/13

% Moisture:

Decanted: (Y/N)

N

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

09/27/13

Injection Volume: 2 (µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) SEPF

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	9	J
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	74	
83-32-9	Acenaphthene	7	J
86-73-7	Fluorene	13	
85-01-8	Phenanthrene	10	

83-32-9	Acenaphthene	7	J
86-73-7	Fluorene	13	
85-01-8	Phenanthrene	10	
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	Ü
207-08-9	Benzo(k) fluoranthene	10	Ü
50-32-8	Benzo(a) pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

EPA SAMPLE NO.

HIMW-13DRE

Lab	Name:	H2M	LABS	INC

Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

1309B92-004BRE

Sample wt/vol:

1000

(g/mL) ml Lab File ID:

3\N61163.D

Level: (low/med)

LOW

Date Received:

Lab Sample ID:

09/19/13

% Moisture:

Decanted: (Y/N)

N

Date Extracted:

09/30/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

10/04/13

Injection Volume: 2 (µL)

GPC Cleanup: (Y/N) N pH: ____

Dilution Factor: 1.00

Extraction: (Type) CONT

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20	-3 Naphthalene	10	บำ
91-57	-6 2-Methylnaphthalene	10	ָ U
208-96	-8 Acenaphthylene	10	

71-20-3	Naphthatene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	
83-32-9	Acenaphthene	4	J
86-73-7	Fluorene	10	U 5
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	ט
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	ם 📗

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-13D

Lab	Name:	H2M LABS INC	Contract:	

Lab Code: H2M

Case No.: KEY-URS SAS No.: ____ SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309B92-004B

Sample wt/vol:

1000

(g/mL) ml

Lab File ID:

3\N60949.D

Level: (low/med)

TOM

Date Received:

09/19/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000

Date Analyzed: (µL)

09/27/13

Injection Volume:

(µL)

Dilution Factor:

1,00

GPC Cleanup: (Y/N) N

2

pH:

Extraction: (Type) SEPF

CONCENTRATION UNITS:

COMPOUND

(µg/¼ or µg/Kg) UG/L	Q
----------------------	---

91-20-3	Naphthalene		10	Ū
91-57-6	2-Methylnaphthaler	ie	10	U
208-96-8	Acenaphthylene		4	J
83-32-9	Acenaphthene		2	J
86~73-7	Fluorene		10	U
85-01-8	Phenanthrene	1.	10	U
120-12-7	Anthracene		10	U
206-44-0	Fluoranthene		10	U
129-00-0	Pyrene		10	U
56-55-3	Benzo(a)anthracene		10	U
218-01-9	Chrysene		10	U
205-99-2	Benzo(b)fluoranthe	ene /	10	U
207-08-9	Benzo(k)fluoranthe	ene X	10	U
50-32-8	Benzo(a)pyrene		10	U
193-39-5	Indeno(1,2,3-cd)py	rene	10	U
53-70-3	Dibenzo(a,h)anthra	cene	10	U
191-24-2	Benzo(g,h,i)peryle	ene /	10	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-14I

Lab Name:	H2M LABS INC	Contract:

Matrix: (soil/water) WATER

Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Lab Sample ID:

1309B92-006B

Sample wt/vol:

Lab Code: H2M

1000

(g/mL) ml

Lab File ID:

3\N60951.D

Level: (low/med)

Date Received:

09/19/13

% Moisture:

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000 (µL)

Decanted: (Y/N) N

LOW

Date Analyzed:

09/27/13

Injection Volume:

2

(µL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH:

Extraction: (Type) SEPF

CAS NO.	COMPOUND	($\mu g/L$ or $\mu g/Kg$) UG/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	12	
83-32-9	Acenaphthene	9	J
86-73-7	Fluorene	5	J
85-01-8	Phenanthrene	7	J
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-14D

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS

SAS No.: _____

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309B92-005B

Sample wt/vol:

1000

(g/mL) m1

Lab File ID:

3\N60950.D

Level: (low/med)

LOW

Date Received:

09/19/13

% Moisture:

Decanted: (Y/N)

N

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

09/27/13

Injection Volume: $\underline{2}$ (µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) SEPF

CONCENTRATION UNITS:

COMPOUND

(µg/L or µg/Kg) UG/L

91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	ט
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	ט
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-15I

Lab Name:	H2M LABS INC	Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309B92-008B

Sample wt/vol:

1000

(g/mL) m1 Lab File ID:

3\N60953.D

Level: (low/med)

LOW

Date Received:

09/19/13

% Moisture:

Decanted: (Y/N)

N

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

09/27/13

Injection Volume: 2 (µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS	NO

COMPOUND

(µg/L or µg/Kg) UG/L

24 22 2	No. 1.11 - 1		
91-20-3	Naphthalene	10	Ū
91-57-6	2-Methylnaphthalene	10	ט
208-96-8	Acenaphthylene	16	
83-32-9	Acenaphthene	8	J
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	3	J
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56 - 55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

⁽¹⁾ Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-15D

Lab Name: H2M LABS INC Contract:

Lab Code: H2M

Case No.: KEY-URS

SAS No.:

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309B92-007B

Sample wt/vol:

1000

(g/mL) m1 Lab File ID:

3\N60952.D

Level: (low/med)

LOW

Date Received:

09/19/13

% Moisture:

Decanted: (Y/N)

N

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

09/27/13

Injection Volume: 2 (µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) SEPF

CONCENTRATION UNITS:

COMPOUND

(ug/L or ug/Kg) UG/L O

CAS NO.	COMPOUND	(hd/r or hd/rd) og/r	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	Ŭ
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

EPA SAMPLE NO.

HIMW-20SRE

Lab Name: H2M LABS I	INC		Cont	ract:	
Lab Code: 10478	Case	No.: KEY-	URS	SAS No.:	SDG No.: KEY-URS173
Matrix: (soil/water)	WATER			Lab Sample ID:	1309C54-004BRE
Sample wt/vol:	1000	(g/mL)	ml	Lab File ID:	3\N61164.D
Level: (low/med)		LOW		Date Received:	09/20/13
% Moisture:	Decante	ed: (Y/N)	N	Date Extracted:	09/30/13
Concentrated Extract	Volume:	1000	(µL)	Date Analyzed:	10/04/13
Injection Volume:	2	(րԼ)		Dilution Factor:	1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	($\mu g/L$ or $\mu g/Kg$) UG/L	Q
91-20-3	Naphthalene	3	J
91-57-6	2-Methylnaphthalene	10	U 🕻
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U.
85-01-8	Phenanthrene	2	J
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U -

(1) Cannot be separated from Diphenylamine

11/1/3

EPA SAMPLE NO.

HIMW-20S

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M

Case No.: KEY-URS

SAS No. :

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

1000

Lab File ID:

1309C54-004B

Sample wt/vol:

(g/mL) ml

3\N60959.D

Level:

(low/med)

LOW

Date Received:

Lab Sample ID:

09/20/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000

(µԼ)

Date Analyzed:

09/27/13

Injection Volume:

2 (µL) Dilution Factor:

1.00

GPC Cleanup: (Y/N) N

pH:

Extraction: (Type) SEPF

CONCENTRATION UNITS:

CAS NO

CAS NO.	COMPOUND		(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene		10	U
91-57-6	2-Methylnaphthalene		10	U
208-96-8	Acenaphthylene	1	10	U
83-32-9	Acenaphthene		10	U
86-73-7	Fluorene		10	U
85-01-8	Phenanthrene		10	U
120-12-7	Anthracene		10	U
206-44-0	Fluoranthene		10	U
129-00-0	Pyrene	\ /	10	U
56-55-3	Benzo(a)anthracene		10	U
218-01-9	Chrysene		10	U
205-99-2	Benzo(b) fluoranthene	X	10	U
207-08-9	Benzo(k) fluoranthene		10	U
50-32-8	Benzo(a)pyrene		10	U
193-39-5	Indeno(1,2,3-cd)pyrene		10	U
53-70-3	Dibenzo(a,h)anthracene		10	U
191-24-2	Benzo(g,h,i)perylene		10	Ü

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) SEPF

EPA SAMPLE NO.

HIMW-20I

Lab Name: H2M LABS]	INC		Cont	ract:	
Lab Code: H2M	Case	No.: KEY-	URS	SAS No.:	SDG No.: KEY-URS173
Matrix: (soil/water)	WATER			Lab Sample ID:	1309C54-003B
Sample wt/vol:	1000	(g/mL)	<u>ml</u>	Lab File ID:	3\N60958.D
Level: (low/med)		LOW		Date Received:	09/20/13
% Moisture:	Decante	ed: (Y/N)	$\underline{\mathbf{N}}$	Date Extracted:	09/23/13
Concentrated Extract	Volume:	1000	(µL)	Date Analyzed:	09/27/13
Injection Volume:	2	(µL)		Dilution Factor:	1.00

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	2	J
91~57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	3	J
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA S	SAMPL	E NO.
-------	-------	-------

DUP-092013 (HI MW - 20 I)

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS173

Matrix: (soil/water) WATER

Lab Sample ID:

1309C54-006B

Sample wt/vol:

1000

(g/mL) ml

Lab File ID:

3\N60961.D

Level: (low/med)

LOW

Date Received:

09/20/13

% Moisture:

Decanted: (Y/N) N

Date Extracted:

09/23/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

09/28/13

Injection Volume: $\underline{2}$ (μ L)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) SEPF

CONCENTRATION UNITS:

COMPOUND

(uq/L	or	µg/Kg)	UG/L	Q

w		(F3) = 0- F3) -31 -51-	>4
91-20-3	Naphthalene	2	J
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	2	J
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b)fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-22

Lab Name:	H2M LABS INC	Contract:
-----------	--------------	-----------

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-003B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 3\N61169.D

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/30/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/04/13

Injection Volume: $\underline{2}$ (µL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ___ Extraction: (Type) SEPF

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-23

Lab Name: H2M LABS INC Contract:

Case No.: KEY-URS

SDG No.: KEY-URS174

Matrix: (soil/water) WATER

Lab Sample ID:

1309D88-007B

Sample wt/vol:

Lab Code: 10478

1000

Lab File ID:

SAS No.:

3\N61092.D

Level: (low/med)

Date Received:

09/24/13

% Moisture:

Decanted: (Y/N)

LOW

Date Extracted: N

ml

09/25/13

Concentrated Extract Volume:

1000 (µL)

(g/mL)

Date Analyzed:

10/02/13

Injection Volume: <u>2</u> (µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N

pH:____

Extraction: (Type) SEPF

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	Ū
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U

129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

HIMW-24

Lab Name:	H2M LABS INC	Contract:
-----------	--------------	-----------

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-004B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 3\N61170.D

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/30/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/04/13

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) SEPF

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	4	J
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	1	J
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	2	J
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-25

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-005B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $3\N61171.D$

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/30/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/04/13

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) SEPF

CAS NO.	COMPOUND	($\mu g/L$ or $\mu g/Kg$) UG/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB 091913

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

Matrix: (soil/water) WATER Lab Sample ID: 1309B92-014A

Sample wt/vol: $\frac{5}{2}$ (g/mL) ML Lab File ID: $\frac{713}{621454}$

Level: (low/med) LOW Date Received: 09/19/13

% Moisture: not dec. Date Analyzed: 09/27/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO. COMPOUND		(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	ט
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	บ

VOLATILE ORGANICS ANALYSIS DATA SHEET

מטש	SAMPLE	MO

TB 092013

Lab Name: H2M LA	BS INC	Contra	ct:	
Lab Code: <u>H2M</u>	Case No.:	KEY-URS SAS	No.:	SDG No.: KEY-URS173
Matrix: (soil/wate	er) WATER		Lab Sample ID:	1309C54-007A
Sample wt/vol:	<u>5</u> (g/mL)	<u>ML</u>	Lab File ID:	713\G21455
Level: (low/med)	LOW		Date Received:	09/20/13
% Moisture: not de	ec.		Date Analyzed:	09/27/13
GC Column: Rtx-6	524 ID:	.18 (mm)	Dilution Factor:	1.00
Soil Extract Volum	ne:	(µL)	Soil Aliquot Volu	μe (μL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L Q
71-43		T T
108-88	-3 Toluene	1 U
100-41	4 Ethylbenzene	1 U
1330-20	7 Xylene (total)	1 0

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB 092413

Lab Name: H2M LABS INC Contract: Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174 Matrix: (soil/water) WATER Lab Sample ID: 1309D88-009A Sample wt/vol: 5 (g/mL) ML Lab File ID: 13\G21527. Level: (low/med) LOW Date Received: 09/24/13 Date Analyzed: 10/02/13 % Moisture: not dec. GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(μL) Soil Aliquot Volume (μL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	Ü
108-88-3	Toluene	1	υ
100-41-4	Ethylbenzene	1	U
1330-20-7	Xvlene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume:

EPA SAMPLE NO.

FB092613

Lab Name:	H2M LABS IN	<u>IC</u>	Contract:	
Lab Code:	10478	Case No.: KEY-URS	SAS No.:	SDG No.: KEY-URS174
Matrix: (so	oil/water)	WATER	Lab Sample ID:	1309F64-009A
Sample wt/v	rol: <u>5</u>	(g/mL) ML	Lab File ID:	13\G21537.
Level: (1	.ow/med)	LOW	Date Received:	09/26/13
% Moisture:	not dec.		Date Analyzed:	10/02/13
GC Column:	Rtx-624	ID: <u>.18</u>	mm) Dilution Factor:	1.00

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Ω
71-43-2	Benzene	1	Ŭ
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	U
1330-20-7	Xvlene (total)	1	U

(μL) Soil Aliquot Volume (μL)

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: H2M LABS INC

EPA SAMPLE NO.

HS-FB092613

					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Lab Code:	10478	Case No.:	KEY-URS	SAS No.:	8 -7-2-2-2-2 0	SDG No.:	KEY-URS174

Contract:

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-010A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 13\G21538.

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO	ļ.	COMPOUND (µ	g/L or	μg/Kg) [IG/L	Q	
	71-43-2	Benzene	1	1	1	U	Aug . Aug
	108-88-3	Toluene	1	1		U	
	100-41-4	Ethylbenzene		1		U	-
	1330-20-7	Xylene (total)	İ	1		U	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB 092613

Lab Name: H2M LABS INC Contract:

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-011A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13}$ \G21539.

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: not dec. Date Analyzed: 10/02/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

	CAS NO.		COMPOUND	(µg/	L or µg/Kg) UG/L	Q
D.*		71-43-2	Benzene		1	U
		108-88-3	Toluene		1	U
NO Residen	5 (10.00)	100-41-4	Ethylbenzene	***************************************	1	Ū
		1330-20-7	Xylene (total)		1	U

FB092613

Lab Name: H2M LABS INC Contract: Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174 Matrix: (soil/water) WATER Lab Sample ID: <u>1309F64-009B</u> Sample wt/vol: 1000 (g/mL) <u>ml</u> Lab File ID: 3\N61175.D LOW Level: (low/med) Date Received: 09/26/13 % Moisture: Decanted: (Y/N) N Date Extracted: 09/30/13 Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/04/13 Dilution Factor: 1.00 Injection Volume: (µL)

CONCENTRATION UNITS:

Extraction: (Type) SEPF

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83~32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	υ
120-12-7	Anthracene	10	บ
206-44-0	Fluoranthene	10	Ü
129-00-0	Pyrene	10	U
56~55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ü
191-24-2	Benzo(g,h,i)perylene	10	Ü

⁽¹⁾ Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N) N pH: ____

HS-FB092613

Lab	Name:	H2M LABS I	NC	Contract:	
					

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS174

Matrix: (soil/water) WATER Lab Sample ID: 1309F64-010B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: $3\N61176.D$

Level: (low/med) LOW Date Received: 09/26/13

% Moisture: Decanted: (Y/N) N Date Extracted: 09/30/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 10/04/13

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) SEPF

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	Ū
207-08-9	Benzo(k) fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

ATTACHMENT B SUPPORT DOCUMENTATION

03665

EXTERNAL CHAIN OF CUSTODY

Jon sundquist Phone Number: (716) 723 -12 07 HZM SDG NO: KEN-URS REMARKS: Project Contact PIS/Quote # LABORATORY USE ONLY or Hand Delivered ____ Airbill # 8 3 ğ 2. Unbroken on outer package: Yor N 1. Present on outer package: Y or N LABI.D. NO. 35B52 Cooler temp 3,2 % 122336969 (122076478 NOTES: Free Cl2 strips(04,912C)Present/Absent COC Tape was: Samples were: pH strips (10BDH0431) <2 3 9 HNO3:52159 H2SO4 52171 HCI:5231 Na2S2O3: 22800123 NH4CI:47072741 1. Shipped NaOH: B0694769 Corporation **ANALYSIS REQUESTED** ZnAc:2107346 Date: CLIENT 1741 Sample Container Description 7 7 4 4 t t Received by: (Signature) Received by: (Signature 575 Broad Hollow Rd., Melville, NY 11747 (631) 694-3040 Fax: (631) 420-8436 www.h2mlabs.com National Good Hempstead HS-HIMW-085 3/120 FIELD I.D. Time: Time: Тіте: Ori- MATHON HIMM-IST HT-MWH 11176098,00004 HIMW- ISD HIMM-08I HIMW-085 HIMM-08D 9/19/12 TURNAROUND TIME: STANGARD Date: Megan Dascolilurs HIMMI -5 Coury Friedman/ves SAMPLERS: (Signature)/Client MATRIX 17/13/1200/6W 30 M2 1000 1 5/14 Relinquished by: (Signature) nquished by: (Signatuy Relinquished by: (Signature DELIVERABLES: 9/18/13 1335 18/12 0830 TIME 113/1025 18 h3 1050 1913 855 DATE

WHITE COPY - ORIGINAL

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

KEY-URS173 S3

03664

EXTERNAL CHAIN OF CUSTODY

H2M SDG NO: KEYURS 17 716-923-12017 Jon Soulgarist Delete In REMARKS: Project Contact: Phone Number: 2. Unbroke pH strips (10BDH0431) <2 3 9 = 12 PIS/Quote # Free Cl2 strips(041912C)Present/Absent LABORATORY USE ONLY HN03:52159 H2S04 52171 HCI:5231 Na2S2O3: 22800123 NH4CI:47072741 ZnAc:2107346 NaOH: B0694769 1. Shipped ____ or Hand Delivered ____ Airbill # 26572-B (9 LABI.D. NO. NOTES: COC Tape Samples were: ANALYSIS REQUESTED 15:10 8/102/16 प्र CLIENT Sample Container Description J BUMM HIMW-135 MS/MSD HS-HIMW-2DI 575 Broad Hollow Rd., Melville, NY 11747 (631) 694-3040 Fax: (631) 420-8436 www.h2mlabs.com 20S HAW-20H FIELD I.D. PROJECT NAME/NUMBER National Goid Hempstal HIMMIH. DUP-092013 HIMM-13T HIMW-13, 6 W TB092013 8-20-13 上十年の一 SAMPLERS: (Signature)/Olient
Cary Friedman / URS Mygan Dascoli /URS 11176098,0004 Standard TIME MATRIX 3 3 3 20/13/1200/5W 3 200 TURNAROUND TIME: ushed by: (Signature) DELIVERABLES: 42413 920 808 5/01/15/62 20/12/13/5 B/20/13 DATE

WHITE COPY - ORIGINAL KEY-URS173 S9

PINK COPY - LABORATORY

YELLOW COPY - CLIENT

575 Broad Hollow Road Melville, NY 11747 tel 631.694.3040 fax 631.420.8436

SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLE(S) RECEIVED: 9/19/13 & 9/20/13 SDG #: KEY-URS173

For Sample(s):

HIMW-08D	HIMW-15D	HIMW-20I
HIMW-08I	HIMW-15I	HIMW-20S
HIMW-08S	HS-HIMW-08S	HS-HIMW-20I
HIMW-13D	TB 091913	DUP-092013
HIMW-14D	HIMW-13I	TB 092013
HIMW-14I	HIMW-13S	

The above water sample(s) was/were analyzed for a select list of volatile organic analytes by EPA method 8260B.

All Q. C. data and calibrations met the requirements of the method, and no problems were encountered with sample analysis. The following should be noted:

Sample HIMW-13S was submitted for matrix spike/matrix spike duplicate analysis (MS/MSD). All percent recoveries and RPDs for the MS and MSD, as well as recoveries for the lab fortified blank, were within Q. C. limits.

All CCC and SPCC calibration requirements were met. In the initial calibrations, average response factors were employed as applicable, and regression functions were used for RSDs above 15%.

In the continuing calibration verifications (CCV) some compounds had %Ds above 15%. These compounds are noted on Form VII. Results for these analytes are flagged with a "Z" qualifier in the spiked analyses (none were found in the samples), indicating that they are regarded estimated.

The variability for two surrogate compounds, DCA and BFB, also exceeded 15% with responses being low. As a result, reported recoveries for the two surrogates are "estimated" and may be biased low.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: October 16, 2013

Ursula Middel Technical Manager

575 Broad Hollow Road Melville, NY 11747 tel 631.694.3040 fax 631.420.8436

SDG NARRATIVE FOR SEMIVOLATILE ANALYSES SAMPLE(S) RECEIVED: 9/19/13 & 9/20/13 SDG #: KEY-URS173

For Sample(s):

HIMW-08D	HIMW-14I	HIMW-13S
HIMW-08I	HIMW-15D	HIMW-20I
HIMW-08S	HIMW-15I	HIMW-20S
HIMW-13D	HS-HIMW-08S	HS-HIMW-20I
HIMW-14D	HIMW-13I	DUP-092013

11/1/13/2

The above water sample(s) was/were analyzed for a select list of base/neutral-acid extractables by EPA method 8270D.

All Q. C. data and calibrations met the requirements of the method. The following should be noted:

Sample HIMW-13S was submitted for matrix spike/matrix spike duplicate analysis (MS/MSD). All percent recoveries and RPDs for the MS and MSD, as well as recoveries for the lab fortified blank, were within Q. C. limits. Note that the MS and MSD were only spiked with a solution containing representative compounds, whereas the LFB was spiked with all targeted analytes.

Surrogate recoveries were very low for three surrogate compounds in samples HIMW-08I, HIMW-20S, and HIMW-13D. The samples were re-extracted out of holding time, and both sets of data are submitted. Surrogate recoveries in the re-extracts were acceptable.

Sample HIMW-08S was re-injected due to a low internal standard area for perylene-d12. The area was again below the acceptance limit confirming matrix interference.

In the initial calibrations, average response factors were employed as applicable, and regression functions were used for RSDs above 20%.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: October 16, 2013

Ursula Middel Technical Manager

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab Name:	H2M LABS INC		Con	tract:	. 		
Lab Code:	<u>10478</u>	Case No.:	KEY-URS	SAS No.:	F=====01	SDG No.:	KEY-URS173

EPA CAMPI E NO	S1	S2	S3	S4	TOT
SAMPLE NO.	NBZ#	FBP#	TPH#	DCB#	OUT
1 LFB-41427	75	75	111	63	0
MB-41427	79	75	121	68	0
HIMW-08D	73	70	108	66	0
4 HIMW-08I	2 *	6*	94	7	3
HIMW-13D	6*	18 *	93	2*	3
6 HIMW-14D	71	70	93	57	0
7 HIMW-141	73	70	103	59	0
8 HIMW-15D	72	68	85	59	0
9 HIMW-151	74	72	112	62	0
0 HIMW-13I	72	71	92	63	0
1 HIMW-13S	74	72	106	67	0
2 HIMW-13SMS	74	70	115	59	0
HIMW-13SMSD	76	72	110	64	0
4 HIMW-20I	74	70	101	60	0
5 HIMW-20S	0	3 *	90	(1*)	3
HS-HIMW-201	75	73	110	64	0
7 DUP-092013	70	69	99	62	0
HS-HIMW-08S	74	69	65	59	0
HIMW-08S	70	68	91	59	0
MB-41525	84	78	123	73	0
1 LFB-41525	85	81	112	71	0
HIMW-08IRE	80	77	116	73	0
HIMW-13DRE	79	76	112	67	0
HIMW-20SRE	62	57	84	52	0
HIMW-08SRE	73	66	108	59	

QC LIMITS

S 1	NBZ	= Nitrobenzene-d5	(35-114)
\$2	FBP	= 2-Fluorobiphenyl	(43-116)
S3	TPH	= 4-Terphenyl-d14	(33-141)
S4	DCB	= 1,2-Dichlorobenzene-d4	(16-110)

Column to be used to flag recovery values

* Values outside of contract required QC limits

D Surrogate diluted out

page 1 of 1

FORM II SV-1

OLM04.2

8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:

H2M LABS INC

Contract:

Lab Code:

H2M

Case No.:

KEY-URS

SAS No.: _____

SDG No.: KEY-URS173

EPA Sample No.(SSTD050##):

SSTD025

Date Analyzed:

09/27/13

Lab File ID (Standard):

3\N60943.D

Time Analyzed:

<u>15:43</u>

Instrument ID:

HP5973N

GC Column:

<u>Rxi-5SIL</u> ID: <u>0.25</u>

(mm)

instrument ib.	115 397 314		QQ Oolui	1111. <u>1321 03</u>	<u> </u>	(/
	IS4		IS5		IS6	
	AREA#	RT #	AREA#	RT #	AREA#	RT #
12 HOUR STD	353499	12.01	366757	15.06	323290	16.18
UPPER LIMIT	706998	12.51	733514	15.56	646580	16.68
LOWER LIMIT	176750	11.51	183379	14.56	161645	15.68
EPA SAMPLE NO.						
LFB-41427	357910	12.01	375953	15.06	358686	16.17
02 MB-41427	332689	12.00	320190	15.05	302129	16.16
03 HIMW-08D	332508	12.00	338172	15.05	311338	16.18
04 HIMW-08I	358790	12.00	352402	15.06	330539	16.19
5 HIMW-13D	367511	12.00	375217	15.06	358474	16.21
6 HIMW-14D	343950	12.00	357635	15.06	343021	16.18
7 HIMW-14I	345855	12.01	366431	15.06	353767	16.18
8 HIMW-15D	370807	12.00	373439	15.05	351375	16.17
9 HIMW-15 I	338853	12.01	351265	15.06	342421	16.17
LO HIMW-13I	335225	12.01	361597	15.06	343392	16.19
L1 HIMW-13S	343984	12.00	361385	15.06	339775	16.19
.2 HIMW-13SMS	363235	12.01	380992	15.06	351298	16.18
.3 HIMW-13SMSD	340820	12.01	343327	15.06	318525	16.18
L4 HIMW-201	332288	12.00	338373	15.06	321779	16.19
L5 HIMW-20S	327816	12.00	353369	15.06	330373	16.19
L6 HS-HIMW-20I	340092	12.00	348968	15.06	332904	16.18
17 DUP-092013	341964	12.00	363587	15.06	329737	16.18
18 HS-HIMW-08S	324243	12.01	371961	15.07	228650	16.18
19 HIMW-08S	333640	12.02	343948	15.07	148900*	16.18

IS4 = Phenanthrene-d10

= Chrysene-d12 IS5

= Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page <u>1</u> of <u>1</u>

OLM04.2

8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: <u>H2M LABS INC</u> Contract: ____

Lab Code: 10478 Case No.: KEY-URS SAS No.: SDG No.: KEY-URS173

EPA Sample No.(SSTD050##): SSTD025 Date Analyzed: 10/11/13

Lab File ID (Standard): W61302R.D Time Analyzed: 2:32

Instrument ID: <u>HP5973N</u> GC Column: <u>Rxi-5SIL</u> ID: <u>0.25</u> (mm)

116	IS4 AREA#	RT #	IS5 AREA#	RT #	IS6 AREA#	RT #
12 HOUR STD	290506	11.87	325866	14.97	277259	16.06
UPPER LIMIT	581012	12.37	651732	15.47	554518	16.56
LOWER LIMIT	145253	11.37	162933	14.47	138630	15.56
EPA SAMPLE NO.						
HIMW-08SRE	397848	11.87	372975	14.99	130172*	16.06

01

IS4 = Phenanthrene-d10

IS5 = Chrysene-d12

IS6 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

page <u>1</u> of <u>1</u>

OLM04.2

H2M LABS INC

PREP BATCH REPORT

Page 1 of 2

Prep Start Date: 9/30/2013 12:46:57 Prep End Date: 10/1/2013 5:32:23 P

Prep Factor Units: mL/mL

Prep Batch ID: 41525		Prep Code: 3520_B	8	Technician:	Technician: Matthew DiStasi	Stasi		E	mL/mL		
Initial Temp:		Final Temp °C									
Sample ID	ClientSampleID	Matrix	PH 4	pH2 SampAmt	Fin Vol	Fin Vol factor GPC Acid Sulfur Florisil	SPC Acid	Sulfur	Florisil	PrepStart	PrepStart PrepEnd
1309B92-002B	HIMW-08I	Groundwater	2	1000	-	0.001				9/30/2013	3 10/1/2013
	Prep hold time was exceeded by 5.178 day(s)	eded by 5.178 da	ıy(s)				1	[[
1309B92-004B	HIMW-13D	Groundwater	2	1000	•	0.001				9/30/2013	3 10/1/2013
* Pre	Robbit Prep hold time was exceeded by 4.067 day(s)	eded by 4.067 da	ıy(s)					[[1
LCS-41525		Aqueous	7	1000	Ψ.	0.001				9/30/2013	
1 FR 41525	î	Aqueous	2	1000	-	0.001				9/30/2013	3 10/1/2013
MB-41525	ľ	Aqueous	64	1000	-	0.001				9/30/2013	3 10/1/2013
1200CEA DOAR	HIMW-20S	Groundwater	2	1000	-	0.001				9/30/2013	3 10/1/2013
Dre	Pren hold time was exceeded by 2.981 day(s)	eded by 2.981 da	ay(s)								1
N 84	HIMW-05D	Groundwater	7	1000		0.001				9/30/2013	3 10/1/2013
SANGAGO POTOGO		Groundwater	2	1000	-	0.001				9/30/2013	3 10/1/2013
1509F64-0016061		Groundwater	8	1000	-	0.001				9/30/2013	3 10/1/2013
1309F64-00 [BMSD	HIRMALOSS	Groundwater	8	1000	-	0.001				9/30/2013	3 10/1/2013
1309104-0020	COCAMAIN.	Groundwater	2	1000	F	0.001				9/30/2013	3 10/1/2013
13091-64-003B	HIMM-22	of carbon of car	,	1000	-	0.001				9/30/2013	3 10/1/2013
1309F64-004B	HIMW-24	Giodinamatei	1 0	1000	-	0.001				9/30/2013	3 10/1/2013
1309F64-005B	HIMW-Z5	Giodinamater		1000	-	0.001				9/30/2013	3 10/1/2013
1309-64-0068	HINWING ST	Groundwater	2	1000	-	0.001				9/30/2013	13 10/1/2013
1309F64-0076	HS-HIMMA-22	Groundwater	1 0	1000	-	0.001				9/30/2013	13 10/1/2013
2000-4016061		Septemberros	6	1000	-	0.001				9/30/2013	13 10/1/2013
1309F64-009B		Groundwater	2 2	1000	-	0.001				9/30/2013	13 10/1/2013
	Chemical / Readent ID		nical / R	Chemical / Reagent Name	Container#		Container l		Amount Added	Unit	
adf.		١									

Cleanups:

GPC = Method EPA3640A Acid = Method EPA3665A

Sulfur= Method EPA3660B

Florisil = Method-EPA3620B

| abs | 575 Broad Hollow Rd., Melville, NY 11747 | (631) 694-3040 Fax: (631) 420-8436

03666

EXTERNAL CHAIN OF CUSTODY

ww.h2mlabs.com	CLIENT: URS	S COLP.	HZI	HZM SDG NO: KEY-UKS 174
Mathemal 6 mg Hempsteal	Ω ! H<] ▲	JP	NOTES:	Froject Contact:
11176098,00004	noiner noine n			Phone Number:
SAMPLERS: (Signature)/Client Megan Dasco (. /URS	Descrip Conn bo			PIS/Quote #
Robin Horley 10RS	<u> </u>			
DELIVERABLES:	8 l			
TURNAROUND TIME: 1 0 0		ANALYSIS REQUESTED	П	
Stanford			3.4	
DATE TIME MATRIX FIELD I.D.	00 € 13 14 14 14 14 14 14 14 14 14 14 14 14 14 1		LAB I.D. NO.	REMARKS:
13/13 GW HIMW-12S	4 XX		11304088	900
123/3 1045 GW HIMW-12I	4 X X		Υ	20,5
\vdash	XX +		400-	74
123/3 1455 GW HIMW- 23	4 XX		1001	
1200 GW DUP092313	X 4		09	8
124/30745 6W HIMW-03D	4 XX		8	
124/3 1015 6W HIMW -03I	* * *		200-	
1/24/3 1220 GW HIM MW-035	4 X X		9	
14/13 TB09243	X			50
		7		
hed by: (Signature)	ture)	" Time:		LABORATORY USE ONLY
10	り一個	ate: Time:	Samples were: 1. Shipped or Hand Delivered COC Tabe was:	Airbill #
24/18184S	BARR	18 UYS	1. Present on outer package: Y or N 2. Unbroken on outer package: Y or N	z
telinquished by: (Signature) Date: Affectived by: (Signature)	·ure)	Date:	Cooler temp 3.3 °C 122336969	6969 (22076478)
telinquished by: (Signature) Date: Received by: (Signature)	ure)	Date: Time:	Free Cl2 strips(041912C)Present/Absent	resent/Absent
			No.25139 NEW JELVI 1101.3231	100004

WHITE COPY - ORIGINAL KEY-URS174 S3

YELLOW COPY - CLIENT

ZnAc:2107346 NaOH: B0694769

70RY

716-856-5636 EXTERNAL CHAIN OF CUSTODY REMARKS: Project Contact: Phone Number: 1001 18-0-0-B 400 787 PIS/Quote # 000 900 83 9 ととって °C 122336969/122076478 H2M SDG NO: LABORATORY USE ONLY Free Cl2 strips(041912C)Present/Absent pH strips (10BDH0431) <2 3 9 >12 P 1. Shipped ___ or Hand Delivered ___ Airbill #_ Na2S2O3: 22800123 NH4CI:47072741 HN03:52159 H2SO4 52171 HCI:5231 180 100 × B B 1. Present on outer package: Y or N 2. Unbroken on outer package: Y or N LAB I.D. NO. NOTES Cooler temp COC Tape was: Samples were: Coronation ANALYSIS REQUESTED Time: Date: CLIENT 03860 Descubtion Total No. of Containers Sample Containe Received by: (Signature HMW-05D MS/MSD 575 Broad Hollow Rd., Melville, NY 11747 (631) 694-3040 Fax: (631) 420-8436 www.h2mlabs.com HS-HMW-05D HS-HIMW-22 PROJECT NAME/NUMBER HEMIPSFALK 1325 FIELD I.D. Time: Ilme: ナダノへと土 FIMW-OSS H/MW-OSD T6 092613 HIMW-22 H M M - Su 3/26/1 HMWH Date: WHITE COPY - ORIGINAL Robin Bray/URS SAMPLERS: (Signature)/Client MEGAN DASCO (!) UP NI76098.00004 labs MATRIX 3 TURNAROUND TIME: 3 1/2/13/0745/6U 3 d by: (Signature) Relinquished by: (Signature) thed by: (Signa) DELIVERABLES 15/13 0930 TIME 0090 11/5 25/13/100 00// 5/ DATE

KEY-URS174 S9

YELLOW COPY - CLIENT

ZnAc:2107346 NaOH: B0694769

ORY

575 Broad Hollow Rd., Melville, NY 11747 (631) 694-3040 Fax: (631) 420-8436 labs

03659

EXTERNAL CHAIN OF CUSTODY PASS

www.h2mlabs.com	CLIENT: URS Co PORTE	HZM SDG NO:	NO:
PROJECT NAME/NUMBER	クカュ	ES:	Project Contact:
11176098.00004	ntainer v		Phone Number:
SAMPLERS: (Signature)/Client	ple coi		-
	ames A	Į u.	PIS/Quote #
DELIVERABLES:	87		
TURNAROUND TIME: Stangad			
DATE TIME MATRIX FIELD I.D.	10th P	LAB I.D. NO.	REMARKS:
9/24/191220 W FB092613	+++	13091 SOFT	4-00g
9/26/13/310 KW HS-F60926/3	4 44	_	
gnature) 0. Co.	Date: Time:	LABORATORY USE ONLY	ONLY
12/12/13/13/13/13/13/13/13/13/13/13/13/13/13/	12 July 3 13: 2 Date: Time:	Samples were: 1. Shipped or Hand Delivered Airbill # COC Tape was: 1. Present on outer package: Y or N	
Date: I'me:	batë: Time:	S, 9° C O. 9° C	€
Relinquished by: (Signature) Date: Time: Received by: (Signature	ature) Date: Time:	() こくない () () () () () () () () () () () () ()	

WHITE COPY - ORIGINAL KEY-URS174 S10

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

575 Broad Hollow Road Melville, NY 11747 tel 631.694.3040 fax 631.420.8436

SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLE(S) RECEIVED: 9/24/13 & 9/26/13 SDG #: KEY-URS174

For Sample(s):

HIMW-03D	DUP092313	HIMW-5I
HIMW-03I	TB 092413	HS-HIMW-22
HIMW-03S	HIMW-05D	HS-HIMW-05D
HIMW-12D	HIMW-05S	FB092613
HIMW-12I	HIMW-22	HS-FB092613
HIMW-12S	HIMW-24	TB 092613
HIMW-23	HIMW-25	

^{&#}x27;The above water sample(s) and blank(s) was/were analyzed for a select list of volatile organic analytes by EPA method 8260B.

All Q. C. data and calibrations met the requirements of the method, unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

Sample —HIMW-05D was submitted for matrix spike/matrix spike duplicate (MS/MSD) analysis. Recoveries for the MS were high, with two compounds above Q. C. limit, whereas in the MSD three analytes had recoveries below the limits, and all RPDs exceeded the limits. These large differences have been observed in the past with other samples that also contained particulates. The cause is under investigation.

The results for the two lab fortified blanks indicate good method efficiency.

All CCC and SPCC calibration requirements were met. In the initial calibrations, average response factors were employed as applicable, and regression functions were used for RSDs above 15%.

In the continuing calibration verifications (CCV) toluene had a %Ds above 15%. The analyte was not found in the samples, but results for the LFBs and the matrix spikes are flagged with a "Z" qualifier, indicating that they are regarded estimated.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: October 17, 2013

Ursula Middel Technical Manager

3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: H2M LAI	BS INC	Contract:		
Lab Code: 10478	Case No.: KEY-U	SAS No.:	SDG No.:	KEY-URS17
Matrix Snike - EDA	Sample No · HTMW	-05D		

	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(µg/L)	(µg/L)	(µg/L)	REC#	REC.
Benzene	50	0	64	128*	50-127
Toluene	50	0	65	130*	70-125
Ethylbenzene	50	0	60	120	68-128
Xylene (total)	150	19	200	121	70-125

	SPIKE	MSD	MSD			
	ADDED	CONCENTRATION	%	%	QC	LIMITS
COMPOUND	(µg/L)	(µg/L)	REC#	RPD#	RPD	REC.
Benzene	50	29	58	75*	30	50-127
Toluene	50	29	58*	77*	30	70-125
Ethylbenzene	50	27	54*	76*	30	68-128
Xylene (total)	150	100	54*	77*	30	70-125

Column to be used to flag recovery and RPD values with an asterisk

*	Values	outside	of	OC	limit	
•	varues	OULSIDE	OL		$_{\rm TTMTC}$	2

RPD: 4	out of	4	outside	li:	mits	
Spike Rec		5 out	of _	8	outside	limits
COMPANIE						
COMMENTS:						

575 Broad Hollow Road Melville, NY 11747

tel 631.694.3040 fax 631.420.8436

SDG NARRATIVE FOR SEMIVOLATILE ANALYSES SAMPLE(S) RECEIVED: 9/24/13 & 9/26/13 SDG #: KEY-URS174

For Sample(s):

HIMW-03D	HIMW-23	HIMW-25
HIMW-03I	DUP092313	HIMW-5I
HIMW-03S	HIMW-05D	HS-HIMW-22
HIMW-12D	HIMW-05S	HS-HIMW-05D
HIMW-12I	HIMW-22	FB092613
HIMW-12S	HIMW-24	HS-FB092613

The above water sample(s) and blank(s) was/were analyzed for a select list of base/neutral-acid extractables by EPA method 8270D.

All Q. C. data and calibrations met the requirements of the method unless discussed below. The following should be noted:

Sample NS-HIMW-05D was submitted for matrix spike/matrix spike duplicate (MS/MSD) analysis. Very low recoveries were obtained for both extracts. A spiking error is suspected because the surrogate recoveries do not indicate matrix interference but are consistent with the LFB recoveries. Along with good surrogate recoveries, the LFBs also showed good extraction efficiency for all targeted analytes. The MS solution was checked but had correct concentrations. Data for a matrix spike blank (LCS) spiked with the MS solution is included for documentation.

Two dilutions had surrogate recoveries for one surrogate above Q. C. limits. Recoveries for HIMW-24 are overall low but only one surrogate did not meet the limits.

Three samples were reanalyzed at dilutions due to concentration levels of targeted analytes above the calibration range. Both sets of data are submitted.

In the initial calibrations, average response factors were employed for all targeted analytes, and variability criteria for the continuous calibration checks (CCV) were met.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: October 17, 2013

Ursula Middel Technical Manager

APPENDIX B OXYGEN SYSTEM OPERATION & MAINTENANCE MEASUREMENTS

SYSTEM #1

Date: Time:			/2013 :02	-							
Weather:			ain	_							
Outdoor Tempera	ature:	~8	3° F	-							
Inside Trailer Temp	erature:	~6	5° F	-							
Performed By	y:	Mike	Ryan	-							
	0.0				1		G	ar D	-		
	U ₂ G	enerator (A	irsep)			(Compressor	(Kaesar Rotai	ry Screv	v)	
Hours			6,522.3	-	Compressor T	Γank *			110		(psi)
Feed Air Pressure *			70	(psi)	D 1: A:	(reac	dings below	are made from	•	oanel)	<i>(</i> .)
Cycle Pressure *			60	_(psi)	Delivery Air Element Outle	et Temperati	ure		109		(psi) (oF)
Oxygen Receiver Pressu	ro *			105	Running Hou	re			7,552		(hours)
Oxygen Receiver Fressu	ic			(psi)	Loading Hou				4,739		(hours)
				4 - /							
Oxygen Purity * maximum reading during loa	ding avala		98.0	(percent)	* maximum read	ina durina lood	ling avala				
maximum reading during loa	idilig Cycle			O ₂ Injec	ion System #1	ing during ioad	ing cycle				
I	njection Bank	l		5 <u>2</u> 11. 3 11	Injection Bank 2				Injecti	ion Bank 3	
ID	njection Bank	sefh	psi	ID		scfh	psi	ID	Injecti Depth	ion Bank 3	psi
			psi 29		Injection Bank 2	scfh 25	psi 19	ID OW-1-9D			psi 28
ID	Depth	scfh		ID	Injection Bank 2 Depth				Depth	scfh	
ID OW-1-1	Depth 95.5	sefh 30	29	ID OW-1-5S	Injection Bank 2 Depth 67.3	25	19	OW-1-9D	Depth 88.5	sefh 30	28
OW-1-1 OW-1-2	95.5 96.5	30 30	29	OW-1-6S	Depth 67.3	25 20	19	OW-1-9D	88.5 87.2	30 30	28
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	30 30 30	29 32 32	OW-1-5S OW-1-6S OW-1-7S	Depth 67.3 67.0 66.9	25 20 15	19 19 18	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1	30 30 30	28 27 31
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3	30 30 30 30 40	29 32 32 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	Depth 67.3 67.0 66.9 66.7	25 20 15	19 19 18 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	scfh 30 30 30 30 30	28 27 31 31
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0	30 30 30 30 40 30	29 32 32 30 28	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	Depth 67.3 67.0 66.9 66.7	25 20 15 15 25	19 19 18 18 20	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	Depth	sefh 30 30 30 30 30 30 35	28 27 31 31 30
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	30 30 30 30 40 30 30	29 32 32 30 28 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	Depth 67.3 67.0 66.9 66.7 64.6	25 20 15 15 25 35	19 19 18 18 20	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	Depth	scfh 30 30 30 30 30 35 30 30	28 27 31 31 30 29

SYSTEM #1

				O ₂ Injecti	on System #1						
	Injection Bank	4			Injection Bank 5				Injecti	ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	30	15	OW-1-17D	79.5	30	15	OW-1-21S	49.3	30	11
OW-1-14S	52.7	20	16	OW-1-18D	78.3	30	28	OW-1-22S	49.3	30	12
OW-1-15S	52.2	20	17	OW-1-19D	78.9	35	29	OW-1-23S	48.8	30	12
OW-1-16SR	51.8	30	26	OW-1-20D	79.5	35	29	OW-1-24S	48.4	30	12
OW-1-17S	50.7	30	24	OW-1-21D	79.5	45	29	OW-1-25S	48.8	30	1
OW-1-18S	50.2	30	15	OW-1-22D	79.5	35	28	OW-1-26SR	48.3	30	15
OW-1-19S	49.7	30	15	OW-1-23D	78.7	30	27	OW-1-27S	48.3	30	14
					50.0	30	26	OW 1 200	40.2	20	13
				OW-1-24D rate of ~30 scfh provided that Bank #5 were set at 3 minutes. O ₂ Injecti				OW-1-28S sures provided in th	48.3 ne hydrosta	30 atic tables prepar	
ments: All injec Corporat	tion point flows wition after collecting	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	on System #1 Injection Bank 8	g was no greate	er than the press	sures provided in th	Injecti	ion Bank 9	red by UR
All injec	tion point flows w	ere adjusted to g readings. Inje	the target flow i	rate of ~30 scfh provided that Bank #5 were set at 3 minutes.	the pressure readin	g was no greate			e hydrosta	atic tables prepa	
ments: All injec Corporat	tion point flows wition after collecting	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	on System #1 Injection Bank 8	g was no greate	er than the press	sures provided in th	Injecti	ion Bank 9	red by UR
ments: All injec Corporat	tion point flows w tion after collecting Injection Bank Depth	ere adjusted to g readings. Injute 7	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	on System #1 Injection Bank 8 Depth	g was no greate	psi	sures provided in th	Injecti	ion Bank 9	ps 30
Ments: All inject Corporate TD OW-1-25D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inje 7 scft 25	the target flow a ection times at E psi	rate of ~30 scfh provided that Bank #5 were set at 3 minutes. O ₂ Injecti ID OW-1-29S	on System #1 Injection Bank 8 Depth 48.5	g was no greate	psi 13	ID OW-1-33D	Injecti Depth	ion Bank 9 scft	ps 30
Ments: All inject Corporate ID OW-1-25D OW-1-26D	Injection Bank 78.1	ere adjusted to g readings. Injo	the target flow is ection times at E psi 27 28	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti ID OW-1-29S OW-1-30S	on System #1 Injection Bank 8 Depth 48.5	g was no greate seft 30 30	psi 13	ID OW-1-33D OW-1-34D	Injecti Depth 83.2	ion Bank 9 scfh 30	ps 30 30
ID OW-1-25D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	re adjusted to g readings. Injectors of the second of the	the target flow is ection times at E psi 27 28 29	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti ID OW-1-29S OW-1-30S OW-1-31S	on System #1 Injection Bank 8 Depth 48.5 48.8	g was no greate scfh 30 30 30	psi 13 13	ID OW-1-33D OW-1-35D	Injecti Depth 83.2 84.5	ion Bank 9 scfh 30 30	ps 30 30 30 30
ID OW-1-25D OW-1-27D OW-1-28D	Injection Bank	ere adjusted to g readings. Injectors of the second	the target flow rection times at E psi 27 28 29 29	arate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Injecti ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	on System #1 Injection Bank 8 Depth 48.5 48.8 49.3	g was no greate sefh 30 30 40	psi	ID OW-1-33D OW-1-35D OW-1-36D	Injects Depth	ion Bank 9 scfh 30 30 20	psi 30 30 30 30 30
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Bank	re adjusted to g readings. Injector 7	the target flow rection times at E psi 27 28 29 29 26	Tate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Injecti ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3	g was no greate seft 30 30 40 30	psi	ID OW-1-33D OW-1-35D OW-1-36D OW-1-37D	Injecti Depth 83.2 84.5 85.0 84.0	30 30 20 25	red by UR
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	Test	re adjusted to g readings. Injectors of the second of the	the target flow rection times at E psi 27 28 29 29 26 37	Ow-1-31S OW-1-32S OW-1-34S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7 50.1	g was no greate scfh 30 30 40 40	psi	OW-1-33D OW-1-35D OW-1-37D OW-1-38D	Injecti Depth 83.2 84.5 85.0 84.0 82.0	30 30 20 25	ps 300 300 300 300 355

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injectio	n System #1						
In	ijection Bank 1	0		I	njection Bank 11				Injecti	on Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	14	OW-1-41D	73.6	20	23	OW-1-43	67.4	30	19
OW-1-38S	50.6	30	14	OW-1-42D	71.0	15	22	OW-1-44	66.6	30	18
OW-1-39S	50.7	30	13	OW-1-45	65.7	30	19	OW-1-51R	60.6	30	18
OW-1-40S	51.1	30	13	OW-1-46	64.3	35	18	OW-1-52	59.3	30	18
OW-1-41S	51.5	30	14	OW-1-47	63.4	35	18	OW-1-53	60.0	30	17
OW-1-42S	51.3	30	13	OW-1-48	62.5	40	18	OW-1-54	60.0	35	16
				OW-1-49	61.5	30	17				
				OW-1-50	61.0	30	17				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

					O	2 Injectio	n System #1					
	Mor	itoring Points	Log			Mo	nitoring Points I	og		Monitori	ng Points Log	
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	24.92	21.2	20.60	0.4	MP-1-5	24.71	20.2	21.44	0	MP-1-1D	17.41	9.91
MP-1-1S	24.98	38.6	18.27	0	MP-1-6	16.97	21.7	14.62	0	MP-1-2D	42.14	39.00
MP-1-2D	19.19	38.1	47.29	0	MP-1-7	20.23	20.9	21.49	0	MP-1-3D	37.17	36.21
MP-1-2S	19.44	39.7	20.88	0.1	MP-1-8	21.75	17.6	7.16	0	MP-1-4D	33.78	35.11
MP-1-3D	17.45	20.9	37.83	0								
MP-1-3S	17.32	37.6	20.83	0								
MP-1-4D	20.13	39.7	29.12	0.5								
MP-1-4S	20.19	21.9	32.77	0								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

							Date:	7/12/2013
				OPERATIONAL N	NOTES			
GA5 Air (Compressor			OI EKATIONAL I	TOTES			
OAJ Ali C	1) Oil Leve * Unloa	el Checked with system un d system, wait until Delive el with system unloaded		nan 9 psi	Yes	X	No	
	3) Oil adde 4) Oil char 5) Oil filter	Low (red) ed	Yes Yes Yes	Normal (green)	No No No	X X X	High (orange)	_
	8) Termina	r Changed arator changed al strips checked	Yes Yes Yes X	<u></u>	No No No	X		
AS-80 O ₂	Generator		V		NT-	v		
	 Prefilter Coalesc 	changed ing changed	Yes Yes		No No	X		
				ENERAL SYSTEM	INOTES			
			3	ENERGIE STETEN	THOTES			
<u>Trailer</u>	 2) 	Performed general house Abnormal conditions obs		lect trash inside and		X	No	_
	_,		,					
	3)	Other major activities co	mpleted					
	4)	Supplies needed						
	5)	Visitors						
		ies such as any alarm/shu il/filter/gasket and/or any			l			
							ed down all equipment and clean e missing from monitoring point	
		ed to 100% oxygen saturation. Calibrated with 100 pp			lene prior	to calibratio	on and unit was reading 96 ppm	. Zeroed unit with fresh air
Electric M Action Ite		-323 tied into Pole #4						
1								

SYSTEM #1

Date: Time:			/2013	-							
Weather:		Su	nny	-							
Outdoor Tempera			1° F	_							
Inside Trailer Temp			0° F	_							
Performed By	y:	Mike	Ryan	-							
	O ₂ Ge	enerator (A	irSep)			(Compressor	(Kaesar Rotai	ry Screv	v)	
Hours			6,638.0	-	Compressor T	Γank *			115		(psi)
Feed Air Pressure *			110	(psi)		(reac	dings below	are made from	•	oanel)	
Cycle Pressure *			60	(psi)	Delivery Air Element Outle	et Temperati	ure		113		(psi) (oF)
O Pi P	*			105	D				7.694		(In)
Oxygen Receiver Pressu	re "			(psi)	Running Hou Loading Hou				7,684 4,825	•	(hours)
				(p31)	Loading Hou	13			7,023		(Hours)
0 7 1			02.7								
Oxygen Purity * maximum reading during loa	nding cycle		93.7	(percent)	* maximum read	ing during load	ling cycle				
	g -, -			O. Injec	ion System #1	2	8 7				
				O ₂ Injec	don by seem nr						
I	njection Bank	1		O ₂ mjec	Injection Bank 2				Injecti	ion Bank 3	
ID	njection Bank	scfh	psi	ID ID		scfh	psi	ID	Injecti Depth	ion Bank 3	psi
			psi 29		Injection Bank 2	scfh 30	psi 19	ID OW-1-9D			psi 27
ID	Depth	scfh		ID	Injection Bank 2 Depth				Depth	scfh	
ID OW-1-1	Depth 95.5	sefh 30	29	ID OW-1-5S	Injection Bank 2 Depth 67.3	30	19	OW-1-9D	Depth 88.5	sefh 30	27
OW-1-1 OW-1-2	95.5 96.5	30 50	29	ID OW-1-5S OW-1-6S	Injection Bank 2 Depth 67.3 67.0	30 35	19	OW-1-9D	88.5 87.2	30 30	27
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	scfh 30 50 30	29 31 32	OW-1-5S OW-1-6S OW-1-7S	Injection Bank 2 Depth 67.3 67.0 66.9	30 35 35	19 19 18	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1	30 30 30	27 27 30
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3	scfh 30 50 30 30	29 31 32 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	Injection Bank 2 Depth 67.3 67.0 66.9 66.7	30 35 35 35	19 19 18 17	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	scfh 30 30 30 30 30	27 27 30 31
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0	scfh 30 50 30 30 35 30	29 31 32 29 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	Injection Bank 2 Depth 67.3 67.0 66.9 66.7 66.0	30 35 35 35 35	19 19 18 17	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	Depth	sefh 30 30 30 30 30 30 35	27 27 30 31 30
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	scfh 30 50 30 30 35 30 30	29 31 32 29 29 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	Injection Bank 2 Depth 67.3 67.0 66.9 66.7 66.0 54.6	30 35 35 35 35 40	19 19 18 17 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	Depth	sefh 30 30 30 30 30 30 30 30	27 27 30 31 30 28

SYSTEM #1

				O ₂ Inject	ion System #1						
	Injection Bank				Injection Bank 5					ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	30	14	OW-1-17D	79.5	30	14	OW-1-21S	49.3	55	12
OW-1-14S	52.7	30	15	OW-1-18D	78.3	30	28	OW-1-22S	49.3	35	13
OW-1-15S	52.2	40	14	OW-1-19D	78.9	30	28	OW-1-23S	48.8	40	12
OW-1-16SR	51.8	50	17	OW-1-20D	79.5	30	29	OW-1-24S	48.4	40	12
OW-1-17S	50.7	30	13	OW-1-21D	79.5	30	29	OW-1-25S	48.8	30	13
OW-1-18S	50.2	20	14	OW-1-22D	79.5	35	28	OW-1-26SR	48.3	25	15
OW-1-19S	49.7	30	15	OW-1-23D	78.7	30	28	OW-1-27S	48.3	30	14
OW 1 200	49.3	30	13	OW-1-24D	78.2	35	26	OW-1-28S	48.3	30	13
	tion point flows w	ere adjusted to g readings. Inje		rate of ~30 scfh provided that Bank #5 were set at 3 minutes	ion System #1		er than the press	sures provided in the			red by UR
ments: All inject Corporati	tion point flows we ion after collecting	ere adjusted to g readings. Inju	ection times at E	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject	ion System #1 Injection Bank 8				Injecti	ion Bank 9	
All inject	tion point flows w	ere adjusted to g readings. Inje		rate of ~30 scfh provided that Bank #5 were set at 3 minutes	ion System #1		psi	sures provided in the			
ments: All inject Corporati	tion point flows we ion after collecting	ere adjusted to g readings. Inju	ection times at E	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject	ion System #1 Injection Bank 8				Injecti	ion Bank 9	ps
ments: All inject Corporati	Injection Bank	ere adjusted to g readings. Inju	psi	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject	ion System #1 Injection Bank 8 Depth	sefh	psi	ID	Injecti Depth	ion Bank 9	ps 29
Ments: All inject Corporation ID OW-1-25D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inje 7 scfh 30	psi 27	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S	ion System #1 Injection Bank 8 Depth 48.5	scfh 30	psi 13	ID OW-1-33D	Injecti Depth	sofh 30	29
ID OW-1-25D OW-1-26D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Injo	psi 27 27	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject ID OW-1-29S OW-1-30S	ion System #1 Injection Bank 8 Depth 48.5	sefh 30 30	psi 13 13	ID OW-1-33D OW-1-34D		ion Bank 9 scfh 30	29 29 30
ID OW-1-25D OW-1-26D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	re adjusted to g readings. Injo 7 scfh 30 30 30	psi 27 27 29	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S	ion System #1 Injection Bank 8 Depth 48.5 48.8	sefh 30 30 30	psi 13 13	ID OW-1-33D OW-1-34D OW-1-35D	Inject Depth 83.2 84.5 85.0	seft 30 30 30	29 29 30 30
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Bank	re adjusted to g readings. Injo 7 sefh 30 30 30 30	psi 27 27 29 29	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S	Injection Bank 8	30 30 30 30	13 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injecti Depth	30 30 30 50	29 29 30 30 30 34
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Bank	ere adjusted to g readings. Inje 7 scfh 30 30 30 30 30	psi 27 27 29 29 28	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	Injection Bank 8	30 30 30 30 30 30	13 13 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D		30 30 30 50 60	29 29 30 30
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	Topo	ere adjusted to g readings. Inje 7 scfh 30 30 30 30 25	27 29 29 28 36	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	Injection Bank 8 Depth 48.5 48.8 49.3 49.7 50.1	sefh 30 30 30 30 30 30 30	13 13 13 13 13 14	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D OW-1-38D		30 30 30 50 60 60	29 29 30 30 30 30

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

O ₂ Injection System #1											
Ir	ijection Bank 1	0		Injection Bank 11				Injection Bank 12			
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	14	OW-1-41D	73.6	30	24	OW-1-43	67.4	30	20
OW-1-38S	50.6	30	15	OW-1-42D	71.0	30	22	OW-1-44	66.6	30	19
OW-1-39S	50.7	30	13	OW-1-45	65.7	35	20	OW-1-51R	60.6	30	18
OW-1-40S	51.1	20	13	OW-1-46	64.3	30	18	OW-1-52	59.3	30	18
OW-1-41S	51.5	30	13	OW-1-47	63.4	30	18	OW-1-53	60.0	40	17
OW-1-42S	51.3	30	13	OW-1-48	62.5	40	18	OW-1-54	60.0	40	16
				OW-1-49	61.5	30	17				
				OW-1-50	61.0	30	18				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

O ₂ Injection System #1													
Monitoring Points Log					Monitoring Points Log					Monitoring Points Log			
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top	
MP-1-1D	25.12	20.9	19.91	0.5	MP-1-5	24.93	19.9	32.77	0	MP-1-1D	15.14	12.27	
MP-1-1S	25.19	40.0	21.11	0	MP-1-6	17.09	20.9	10.50	0	MP-1-2D	40.11	39.95	
MP-1-2D	19.42	38.1	45.79	0	MP-1-7	20.40	19.9	32.40	0	MP-1-3D	40.55	39.00	
MP-1-2S	19.67	39.6	23.66	0.2	MP-1-8	21.91	37.5	9.45	0.2	MP-1-4D	37.61	35.38	
MP-1-3D	17.61	19.4	42.12	0									
MP-1-3S	17.50	39.9	34.39	0.3									
MP-1-4D	20.35	39.3	39.38	0.4									
MP-1-4S	20.37	32.4	35.37	0									

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

						Date:	7/26/2013
			OPERATIONAL N	IOTES			
GA5 Air Compressor			Of Electronic .	OILS			
1) Oil Leve * Unload	el Checked with system unl d system, wait until Deliver el with system unloaded		han 9 psi	Yes	X	No	
3) Oil adde 4) Oil chan	Low (red) _d ged	Yes Yes	Normal (green)	No	X X X	High (orange)	
	C	YesYesYesX		No No No	X X X		
AS-80 O ₂ Generator 1) Prefilter 2) Coalesci	0	YesYes		No No	X		
				LNOTEC			
		G	GENERAL SYSTEM	NOTES			
Trailer 1) 2)	Performed general housel			Yes	X	No	
3)	Other major activities con	npleted					
4)	Supplies needed						
5)	Visitors						
	es such as any alarm/shu l/filter/gasket and/or any						
Soaked up small amount brush and vine growth a		rator for disposal. Wij	ped down all equipm	ent and cle	eaned up al	l garbage from around fence areas. C	'ut down heavy weed,
	replaced and was calibrate ir and was reading 0.0 ppm					sobutylene prior to calibration and un n.	it was reading 95 ppm.
Electric Meter # 96-934- Action Items:	-323 tied into Pole #4						

SYSTEM #1

Date: Time: Weather: Outdoor Tempera Inside Trailer Temp Performed By	erature: y:	13 R: ~80 ~8: Mike	/2013 :13 ain O° F 5° F Ryan	- - - -							
	O ₂ Ge	enerator (A	irSep)			(Compressor	(Kaesar Rotai	ry Screv	v)	
Hours			6,783.7	-	Compressor 7	Γank *			115		(psi)
Feed Air Pressure *			105	(psi)		(reac	dings below	are made from	control p	anel)	
Cycle Pressure *			60	(psi)	Delivery Air Element Outl	ot Tomporoti	uro		109		(psi) (oF)
Cycle i ressure				_(psi)	Element Out	et Temperati	uic		100		(01)
Oxygen Receiver Pressu	re *			105	Running Hou				7,848		(hours)
				(psi)	Loading Hou	rs			4,929		(hours)
Oxygen Purity			97.8	(percent)							
* maximum reading during loa	ding cycle		77.0	_(percent)	* maximum read	ing during load	ling cycle				
				O ₂ Injecti	on System #1						
I	njection Bank				Indication Deals 2				Inject	ion Bank 3	
	_				Injection Bank 2		1		–		
ID	Depth Depth	sefh	psi	ID	Depth Depth	scfh	psi	ID	Depth	sefh	psi
ID OW-1-1	_		psi 29	ID OW-1-5S			psi 19	ID OW-1-9D	–		psi 27
	Depth	scfh			Depth	scfh			Depth	scfh	
OW-1-1	Depth 95.5	scfh 35	29	OW-1-5S	Depth 67.3	scfh 25	19	OW-1-9D	Depth 88.5	scfh 30	27
OW-1-1 OW-1-2	95.5 96.5	35 35	29	OW-1-5S OW-1-6S	67.3 67.0	25 30	19	OW-1-9D	88.5 87.2	30 30	27
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	35 35 45	29 30 33	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	25 30 30	19 19 18	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1	sefh 30 30 30	27 27 31
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	sefh 35 35 45 30	29 30 33 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	sefh 25 30 30 30	19 19 18 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	seft 30 30 30 30 30	27 27 31 31
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0	35 35 35 45 30	29 30 33 29 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7	sefh 25 30 30 30 25	19 19 18 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	88.5 87.2 86.1 85.3 84.7	scft 30 30 30 30 30 30	27 27 31 31 30
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	35 35 45 30 30	29 30 33 29 29 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0	sefh 25 30 30 30 25 35	19 19 18 18 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D		scft 30 30 30 30 30 30 30 30	27 27 31 31 30 28

SYSTEM #1

				O ₂ Inject	on System #1						
	Injection Bank	1			Injection Bank 5				Injecti	ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	30	15	OW-1-17D	79.5	30	14	OW-1-21S	49.3	35	12
OW-1-14S	52.7	40	15	OW-1-18D	78.3	30	28	OW-1-22S	49.3	30	13
OW-1-15S	52.2	30	15	OW-1-19D	78.9	35	29	OW-1-23S	48.8	30	12
OW-1-16SR	51.8	30	17	OW-1-20D	79.5	30	29	OW-1-24S	48.4	30	12
OW-1-17S	50.7	50	13	OW-1-21D	79.5	35	29	OW-1-25S	48.8	30	13
OW-1-18S	50.2	55	14	OW-1-22D	79.5	40	28	OW-1-26SR	48.3	35	15
OW-1-19S	49.7	40	15	OW-1-23D	78.7	40	28	OW-1-27S	48.3	35	14
OW-1-20S	40.0	35	14	OW-1-24D	78.2	30	27	OW-1-28S	48.3	35	14
All inject		ere adjusted to	the target flow i	rate of ~30 scfh provided that Bank #5 were set at 3 minutes	the pressure readin	g was no greate	er than the press	sures provided in th	e hydrosta	atic tables prepa	red by UR
ments: All inject Corporati	tion point flows we ion after collecting	ere adjusted to g readings. Inje	the target flow i	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Inject	the pressure readin on System #1 Injection Bank 8		er than the press		Injecti	ion Bank 9	red by UR
All inject	tion point flows wo	ere adjusted to g readings. Inje	the target flow i	rate of ~30 scfh provided that Bank #5 were set at 3 minutes	the pressure readin		psi	sures provided in the			
ments: All inject Corporati	tion point flows we ion after collecting	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Inject	the pressure readin on System #1 Injection Bank 8				Injecti	ion Bank 9	ps
ments: All inject Corporati	Injection Bank	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject	the pressure readin on System #1 Injection Bank 8 Depth	scfh	psi	ID	Injecti Depth	ion Bank 9	ps 29
Ments: All inject Corporation of the Corporation of	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inje	the target flow a cetion times at E	rate of ~30 scfh provided that 3ank #5 were set at 3 minutes O2 Inject ID OW-1-29S	the pressure readin on System #1 Injection Bank 8 Depth 48.5	scfh 20	psi 13	ID OW-1-33D	Injecti Depth 83.2	sefh	29 30
ID OW-1-25D OW-1-26D	Injection Bank 7 Depth 78.1	re adjusted to g readings. Inje	the target flow is exciton times at E psi 27 28	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8	sefh 20 15	psi 13 13	ID OW-1-33D OW-1-34D		soft 30 30	9 29 300 300 300
ID OW-1-25D OW-1-26D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	re adjusted to g readings. Inje 7 scfh 45 50 35	the target flow is exciton times at E psi 27 28 28	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8 49.3	sefh 20 15 30	psi 13 13 13	ID OW-1-33D OW-1-34D OW-1-35D	Injecti Depth 83.2 84.5 85.0	30 30 30	99 30 30 30 30
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Bank	ere adjusted to g readings. Inje 7 scfh 45 50 35	the target flow rection times at E psi 27 28 28 29	Tate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	the pressure readin fon System #1 Injection Bank 8 Depth 48.5 48.8 49.3	20 15 30 25	psi 13 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injecti Depth	30 30 40	9 29 30 30 30 30 30
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Tipection Bank	re adjusted to g readings. Injector 7	psi 27 28 28 29 28	Tate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	the pressure readin ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7	sefh 20 15 30 25 30	13 13 13 14	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D		30 30 40 40	930 300 300 344 300 300 300 300 300 300 3
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	Tipection Bank	ere adjusted to g readings. Injectors of the second of the	27 28 28 29 28 36	Og Inject Og Inject Ow-1-30S OW-1-31S OW-1-32S OW-1-34S	the pressure readin ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7 50.1	sefh 20 15 30 25 30 30	13 13 13 13 14 14	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D OW-1-38D	Depth 83.2 84.5 85.0 85.0 84.0 82.0	30 30 30 40 40 30	30 30 30 30 30 30

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	on System #1						
In	ijection Bank 1	0		I	njection Bank 11				Injecti	on Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	14	OW-1-41D	73.6	30	24	OW-1-43	67.4	30	20
OW-1-38S	50.6	35	15	OW-1-42D	71.0	30	23	OW-1-44	66.6	40	20
OW-1-39S	50.7	30	14	OW-1-45	65.7	40	20	OW-1-51R	60.6	35	19
OW-1-40S	51.1	30	14	OW-1-46	64.3	30	18	OW-1-52	59.3	35	18
OW-1-41S	51.5	35	13	OW-1-47	63.4	30	18	OW-1-53	60.0	45	17
OW-1-42S	51.3	40	13	OW-1-48	62.5	30	18	OW-1-54	60.0	40	16
				OW-1-49	61.5	30	17				
				OW-1-50	61.0	40	18				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

					0	2 Injectio	n System #1					
	Mor	itoring Points	Log			Mo	nitoring Points L	og		Monitori	ing Points Log	
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	25.40	20.9	22.12	0.6	MP-1-5	25.21	16.6	29.64	0	MP-1-1D	21.77	19.10
MP-1-1S	25.48	39.8	18.68	0.2	MP-1-6	17.47	20.9	11.62	0	MP-1-2D	35.99	34.07
MP-1-2D	19.62	39.4	37.17	0.3	MP-1-7	20.75	18.8	39.37	0	MP-1-3D	45.11	41.14
MP-1-2S	19.97	39.2	38.11	0.1	MP-1-8	22.26	28.7	12.22	0	MP-1-4D	38.77	35.41
MP-1-3D	17.86	18.9	52.66	0								
MP-1-3S	17.77	39.0	23.89	0.4								
MP-1-4D	20.61	36.2	37.39	0.5								
MP-1-4S	20.72	40.0	23.29	0								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

						Date:	8/12/2013
			OPERATIONAL N	NOTES			
GA5 Air Compressor			of Electronics.	IOTES			
1) Oil Leve * Unload	el with system unloaded	ery Air Pressure is less tha		Yes	X	No	
2) 07 11	Low (red)		Normal (green)	—	X	High (orange)	_
3) Oil adde		Yes		No	X		
4) Oil chan5) Oil filter	_	Yes Yes		No No	X		
6) Air filter		Yes	_	No	X		
	rator changed	Yes X	<u> </u>	No	X		
8) Termina	l strips checked	Yes X	<u> </u>	No			
AS-80 O ₂ Generator 1) Prefilter	changed	Yes		No	X		
2) Coalesci		Yes		No	X		
		GF	ENERAL SYSTEM	INOTES			
Trailer							
1)	Performed general house	ekeeping (i.e. sweep, colle	ect trash inside and	out, etc.) Yes	X	No	_
2)	Abnormal conditions ob	served (e.g. vandalism)					
3)	Other major activities co	ompleted					
					_		
4)	Supplies needed						
,	Бирр						
5)	Visitors						
		utdowns, sampling, mai y other abnormal operat		l		_	_
	om fan blade. System wa					. Opened compressor and found eaned up all garbage from aroun	
Took apart air compress	sor and found motor blow	er wheel broken off end o	of motor along with f	fan ring and	d wheel. To	m on August 13, 2013 and found book apart broken fan and tested dement parts for broken fan. Syst	compressor for operation.
	, ,	ion. PID was checked wi om isobutylene and readin		lene prior to	o calibration	n and unit was reading 97 ppm.	Zeroed unit with fresh air
Electric Meter # 96-934- Action Items:	-323 tied into Pole #4						

SYSTEM #1

Date:		8/22	/2013								
Time:		11	:40	-							
Weather:			ain	_							
Outdoor Tempera	ature:	~80)° F	-							
Inside Trailer Temp	erature:		8° F	-							
Performed B	y:	Mike	Ryan	-							
				_							
	O ₂ Ge	enerator (A	irSep)				Compressor	(Kaesar Rotai	ry Screv	v)	
Hours				-	Compressor T	Γank *					(psi)
Feed Air Pressure *				(psi)		(reac	dings below	are made from	control p	oanel)	
					Delivery Air					•	(psi)
Cycle Pressure *				(psi)	Element Outle	et Temperat	ure				(oF)
Oxygen Receiver Pressu	ro *				Running Hou	re					(hours)
Oxygen Receiver Flessu	ie ·				_					<u>.</u>	
				(psi)	Loading Hou	rs				-	(hours)
Oxygen Purity				(percent)							
* maximum reading during loa	ading cycle			•	* maximum read	ing during load	ling cycle				
				O ₂ Inject	ion System #1						
				2 3	- · · · · · · · · · · · · · · · · · · ·						
I	njection Bank	l .		2 3	Injection Bank 2				Inject	ion Bank 3	
ID	njection Bank	sefh	psi	ID		scfh	psi	ID	Inject Depth	ion Bank 3	psi
			psi		Injection Bank 2	scfh	psi	ID OW-1-9D	–		psi
ID	Depth		psi	ID	Injection Bank 2 Depth	scfh	psi		Depth		psi
ID OW-1-1	Depth 95.5		psi	ID OW-1-5S	Injection Bank 2 Depth 67.3	sefh	psi	OW-1-9D	Depth 88.5		psi
OW-1-1 OW-1-2	95.5 96.5		psi	ID OW-1-5S OW-1-6S	Depth 67.3 67.0	sefh	psi	OW-1-9D	88.5 87.2		psi
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3		psi	OW-1-5S OW-1-6S OW-1-7S	Depth 67.3 67.0 66.9	scfh	psi	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1		psi
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3		psi	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	Depth 67.3 67.0 66.9 66.7	scfh	psi	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3		psi
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0		psi	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	Depth 67.3 67.0 66.9 66.7 66.0	seft	psi	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	88.5 87.2 86.1 85.3 84.7		psi
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9		psi	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	Injection Bank 2 Depth 67.3 67.0 66.9 66.7 66.0 54.6	seft	psi	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	Depth		psi

SYSTEM #1

								Date:		8/22/201	13
				O ₂ Injecti	on System #1						
I	njection Bank	4		5 2 11 3 1 1	Injection Bank 5	;			Inject	ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1			OW-1-17D	79.5			OW-1-21S	49.3		
OW-1-14S	52.7			OW-1-18D	78.3			OW-1-22S	49.3		
OW-1-15S	52.2			OW-1-19D	78.9			OW-1-23S	48.8		
OW-1-16SR	51.8			OW-1-20D	79.5			OW-1-24S	48.4		
OW-1-17S	50.7			OW-1-21D	79.5			OW-1-25S	48.8		
OW-1-18S	50.2			OW-1-22D	79.5			OW-1-26SR	48.3		
OW-1-19S	49.7			OW-1-23D	78.7			OW-1-27S	48.3		
OW-1-20S	49.3			OW-1-24D	78.2			OW-1-28S	48.3		
				rate of ~30 scfh provided that the Bank #5 were set at 3 minutes.		ig was no greate	er than the press	sures provided in th	e hydrosta	atic tables prepar	red by URS
				O ₂ Injecti	on System #1						
ID	Depth	scfh	psi	ID	Injection Bank 8 Depth	scfh	psi	ID	Depth	ion Bank 9 scfh	psi
OW-1-25D	78.1	Sem	Por	OW-1-29S	48.5	3011	Poz	OW-1-33D	83.2	Jen	Par
OW-1-26D	78.1			OW-1-30S	48.8			OW-1-34D	84.5		
OW-1-27D	77.9			OW-1-31S	49.3			OW-1-35D	85.0		
OW-1-28D	78.0			OW-1-32S	49.3			OW-1-36D	85.0		
OW-1-29D	78.4			OW-1-33S	49.7			OW-1-37D	84.0		
OW-1-30D	79.0			OW-1-34S	50.1			OW-1-38D	82.0		
OW-1-31D	80.5			OW-1-35S	50.3			OW-1-39D	78.0		
OW-1-32D	81.6			OW-1-36S	50.3			OW-1-40D	76.0		
				•			<u> </u>	•			
Corporation	on point flows w n after collecting		the target flow	rate of ~30 scfh provided that	the pressure readin	ig was no greate	er than the press		e hydrosta		•

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	on System #1						
Iı	njection Bank 1	0		I	Injection Bank 11				Injecti	on Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5			OW-1-41D	73.6			OW-1-43	67.4		
OW-1-38S	50.6			OW-1-42D	71.0			OW-1-44	66.6		
OW-1-39S	50.7			OW-1-45	65.7			OW-1-51R	60.6		
OW-1-40S	51.1			OW-1-46	64.3			OW-1-52	59.3		
OW-1-41S	51.5			OW-1-47	63.4			OW-1-53	60.0		
OW-1-42S	51.3			OW-1-48	62.5			OW-1-54	60.0		
				OW-1-49	61.5						
				OW-1-50	61.0						

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

					0	2 Injectio	n System #1					
	Mor	Monitoring Points Log Monitoring Points Log Monitoring Points Log										
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	25.55	20.0	14.58	0.5	MP-1-5	25.37	16.5	22.27	0	MP-1-1D	5.38	2.10
MP-1-1S	25.64	39.5	9.87	0.1	MP-1-6	17.62	18.3	6.03	0	MP-1-2D	9.10	4.11
MP-1-2D	19.92	38.5	11.88	0.2	MP-1-7	20.89	18.8	31.60	0	MP-1-3D	7.70	5.14
MP-1-2S	20.15	39.9	9.87	0	MP-1-8	22.41	23.6	12.90	0	MP-1-4D	9.12	6.60
MP-1-3D	18.09	19.1	8.31	0								
MP-1-3S	17.94	39.3	19.49	0								
MP-1-4D	20.75	38.9	8.66	0.4								
MP-1-4S	20.72	40.0	5.35	0								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

OPERATIONAL NOTES
Oil Level Checked with system unloaded*
1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi 2) Oil Level with system unloaded Low (red) Normal (green) High (orange) 3) Oil added Yes No 4) Oil changed Yes No 5) Oil filter changed Yes No 7) Oil separator changed Yes No 8) Terminal strips checked Yes No 8) Terminal strips checked Yes No 2) Coalescing changed Yes No Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
Low (red)
3) Oil added
4) On changed Yes
6) Air filter Changed Yes No 7) Oil separator changed Yes No 8) Terminal strips checked Yes No AS-80 O; Generator 1) Prefilter changed Yes No 2) Coalescing changed Yes No GENERAL SYSTEM NOTES Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
6) Air filter Changed Yes No 7) Oil separator changed Yes No 8) Terminal strips checked Yes No AS-80 O; Generator 1) Prefilter changed Yes No 2) Coalescing changed Yes No GENERAL SYSTEM NOTES Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
8) Terminal strips checked Yes No
AS-80 O, Generator 1) Prefilter changed Yes No 2) Coalescing changed Yes No GENERAL SYSTEM NOTES Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) YesX No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
1) Prefilter changed Yes No No Coalescing changed Yes No
Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed
3) Other major activities completed 4) Supplies needed
4) Supplies needed
5) Vicitore
5) Vicitore
5) Visitors
Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions:
System OFF since August 13, 2013 dur to broken fan in Kaeser compressor. Parts were ordered week of August 19th and are expected arrive during the week of August 26th.
DO Meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 98 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 101 ppm.
Electric Meter # 96-934-323 tied into Pole #4
Action Items:

SYSTEM #1

Time: Weather: Outdoor Tempers Inside Trailer Temp Performed By	erature:	11 Su ~7: ~65	2013 :10 nny 5° F 8° F Ryan									
	O ₂ Ge	enerator (A	irSep)		Compressor (Kaesar Rotary Screw)							
Hours				-	Compressor T	Tank *					(psi)	
Feed Air Pressure *				(psi)		(reac	dings below a	are made from o	control p	anel)		
Cycle Pressure *				(psi)	Delivery Air Element Outle	et Temperati	ure				(psi) (oF)	
Oxygen Receiver Pressu	re *			(psi)	Running Hou Loading Hou						(hours)	
Oxygen Purity * maximum reading during loa	ding cycle			(percent)	* maximum read	ing during load	ling cycle					
	njection Bank	1		O ₂ Injecti	on System #1 Injection Bank 2				Inject	ion Bank 3		
ID	Depth Depth	scfh	psi	ID	Depth Depth	scfh	psi	ID	Depth	sefh	psi	
OW-1-1	95.5			OW-1-5S	67.3			OW-1-9D	88.5			
OW-1-1				OW-1-5S	67.3 67.0			OW-1-9D	88.5 87.2			
	95.5											
OW-1-2	95.5 96.5			OW-1-6S	67.0			OW-1-10D	87.2			
OW-1-2 OW-1-3	95.5 96.5 96.3			OW-1-6S OW-1-7S	67.0			OW-1-10D	87.2			
OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0			OW-1-6S OW-1-7S OW-1-8S	67.0 66.9 66.7			OW-1-10D OW-1-11D OW-1-12D	87.2 86.1 85.3			
OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0 93.9			OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.0 66.9 66.7 66.0			OW-1-10D OW-1-11D OW-1-12D OW-1-13D	87.2 86.1 85.3 84.7			
OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9			OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.0 66.9 66.7 66.0 54.6			OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	87.2 86.1 85.3 84.7			

SYSTEM #1

								Date:		9/6/201	3
				O ₂ Injecti	on System #1						
1	Injection Bank	4			Injection Bank 5				Inject	ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1			OW-1-17D	79.5			OW-1-21S	49.3		
OW-1-14S	52.7			OW-1-18D	78.3			OW-1-22S	49.3		
OW-1-15S	52.2			OW-1-19D	78.9			OW-1-23S	48.8		
OW-1-16SR	51.8			OW-1-20D	79.5			OW-1-24S	48.4		
OW-1-17S	50.7			OW-1-21D	79.5			OW-1-25S	48.8		
OW-1-18S	50.2			OW-1-22D	79.5			OW-1-26SR	48.3		
OW-1-19S	49.7			OW-1-23D	78.7			OW-1-27S	48.3		
OW-1-20S	49.3			OW-1-24D	78.2			OW-1-28S	48.3		
				rate of ~30 scfh provided that is Bank #5 were set at 3 minutes.		g was no greate	er than the press	sures provided in th	e hydrosta	atic tables prepar	red by URS
				O ₂ Injecti	on System #1						
	niection Rank	7			Injection Rank 8				Inject	ion Rank 9	
ID	Depth	7 sefh	psi	ID	Injection Bank 8 Depth	scfh	psi	ID	Inject Depth	ion Bank 9	psi
	,		psi	ID OW-1-29S			psi	ID OW-1-33D			psi
ID	Depth		psi		Depth		psi		Depth		psi
OW-1-25D	78.1		psi	OW-1-29S	Depth 48.5		psi	OW-1-33D	Depth 83.2		psi
OW-1-25D OW-1-26D	78.1 78.1		psi	OW-1-29S OW-1-30S	Depth 48.5 48.8		psi	OW-1-33D OW-1-34D	83.2 84.5		psi
OW-1-25D OW-1-26D OW-1-27D	78.1 78.1 77.9		psi	OW-1-29S OW-1-30S OW-1-31S	48.5 48.8 49.3		psi	OW-1-33D OW-1-34D OW-1-35D	Depth		psi
OW-1-25D OW-1-26D OW-1-27D OW-1-28D	78.1 78.1 77.9 78.0		psi	OW-1-29S OW-1-30S OW-1-31S OW-1-32S	48.5 48.8 49.3 49.3		psi	OW-1-33D OW-1-34D OW-1-35D OW-1-36D	83.2 84.5 85.0 85.0		psi
OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	78.1 78.1 77.9 78.0		psi	OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	Depth 48.5 48.8 49.3 49.3 49.7		psi	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	83.2 84.5 85.0 85.0		psi
OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	78.1 78.1 77.9 78.0 78.4 79.0		psi	OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S OW-1-34S	Depth 48.5 48.8 49.3 49.3 49.7 50.1		psi	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D OW-1-38D	83.2 84.5 85.0 85.0 84.0		psi
OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D OW-1-31D OW-1-32D	78.1 78.1 77.9 78.0 78.4 79.0 80.5 81.6	scfh ere adjusted to		OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S OW-1-34S	Depth 48.5 48.8 49.3 49.7 50.1 50.3 50.3	scfi		OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D OW-1-38D OW-1-39D OW-1-40D	Depth	scfi	ed by URS

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	on System #1						
Ir	njection Bank 1	0		I	njection Bank 11				Injecti	on Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5			OW-1-41D	73.6			OW-1-43	67.4		
OW-1-38S	50.6			OW-1-42D	71.0			OW-1-44	66.6		
OW-1-39S	50.7			OW-1-45	65.7			OW-1-51R	60.6		
OW-1-40S	51.1			OW-1-46	64.3			OW-1-52	59.3		
OW-1-41S	51.5			OW-1-47	63.4			OW-1-53	60.0		
OW-1-42S	51.3			OW-1-48	62.5			OW-1-54	60.0		
				OW-1-49	61.5						
				OW-1-50	61.0						

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

	O ₂ Injection System #1											
	Mor	nitoring Points	Log			Mo	nitoring Points I	og		Monitori	ng Points Log	
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	26.00	20.9	3.71	0.3	MP-1-5	25.81	19.1	21.50	0	MP-1-1D	1.84	1.12
MP-1-1S	26.07	39.3	9.08	0.1	MP-1-6	18.09	16.9	4.23	0	MP-1-2D	10.15	6.52
MP-1-2D	20.35	36.1	14.47	0.4	MP-1-7	21.38	20.3	34.60	0	MP-1-3D	5.11	4.77
MP-1-2S	20.58	39.6	9.31	0	MP-1-8	22.92	19.0	9.14	0	MP-1-4D	1.40	0.98
MP-1-3D	18.56	19.8	7.20	0								
MP-1-3S	18.45	31.4	16.67	0.2								
MP-1-4D	21.33	24.8	2.22	0.3								
MP-1-4S	21.35	36.5	1.70	0								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

					Date:	9/6/2013
		0	PERATIONAL NOTE	ES		
GA5 Air Compres	essor					
_	il Level Checked with system u	nloaded*	Yes		No	
	Unload system, wait until Deliv	ery Air Pressure is less than	n 9 psi			
2) O	il Level with system unloaded				,	
3.0	Low (red))	Normal (green)	. ——	High (orange)	
· /	oil added Oil changed	Yes Yes	N	0		
	ni cnanged Dil filter changed	Ves		TO		
	ir filter Changed	Yes Yes		0		
1	oil separator changed	Yes		0		
	erminal strips checked	Yes		0		
AS-80 O ₂ Genera	<u>itor</u>					
1) Pı	refilter changed	Yes	N	o		
2) C	coalescing changed	Yes	N	0		
		GEN	NERAL SYSTEM NO	TES		
<u>Trailer</u>						
1)	Performed general house	sekeeping (i.e. sweep, collec-				
			Yes	X	No	
2	Alamanna I ann dialaman					
2)	Abnormal conditions of	bserved (e.g. vandalism)		_	_	
	-					
3)	Other major activities c	completed				
4)	Supplies needed					
'/	вирриев песаса					
	-					
5)	Visitors					
Dagand wanting	a attait as such as any alaum/sl		tarana matarial			
	activities such as any alarm/sh site, oil/filter/gasket and/or an					ļ
transported ori-s	site, un/inter/gasket and/or an	ly Other aunormai operaci	ng conditions.			
C-votore OFF sino	- A must 12 2012 due to broke	- f i- Vassar compressor	Danta arrana andanad mia	-1- of Assessed 10th one	4 arranated amirro dr	
	e August 13, 2013 due to broke new fan and guard on Septembe	-		-		-
	d leak in oil line that was damag		-		•	-
_	e injection banks. Left system r	•		•		diks to be filled with oxygen
002222	· · · · · · · · · · · · · · · · · · ·				. opu	
DO Meter was ca	alibrated to 100% oxygen satura	tion. PID was checked with	h 100 ppm isobutylene p	orior to calibration and	d unit was reading 98 pp	pm. Zeroed unit with fresh air
and was reading (0.0 ppm. Calibrated with 100 p	pm isobutylene and reading	g was 101 ppm.			•
Electric Meter#	96-934-323 tied into Pole #4					
	70 75 1 525 tied into 1 616 ii 1					
Action Items:						

SYSTEM #1

Date: Time: Weather: Outdoor Tempera Inside Trailer Temp Performed By	erature: y:	11 Su ~4; ~6; Mike	/2013 :10 nny 8° F 8° F Ryan	-							
	O ₂ Ge	enerator (A	irSep)			(Compressor	(Kaesar Rotai	y Screv	v)	
Hours			6,786.1	-	Compressor T	∑ank *			110		(psi)
Feed Air Pressure *			110	_(psi)		(reac	dings below	are made from	control p	anel)	
Cycle Pressure *			60	(psi)	Delivery Air Element Outle	et Temperati	ure		107 179		(psi) (oF)
Oxygen Receiver Pressu	re *			85 (psi)	Running Hou Loading Hou				7,851 4,931		(hours)
Oxygen Purity * maximum reading during loa	ding cycle		97.5	(percent)	* maximum read	ing during load	ing cycle				
				O ₂ Injecti	on System #1					ion Bank 3	
1	njection Bank				Injection Bank 2				Injecti	ion Bank 3	
ID	_		nsi	ID		sefh	nsi	ID	_		nsi
ID OW-1-1	Depth 95.5	scfh 30	psi 30	ID OW-1-5S	Depth 67.3	scfh 30	psi 20	ID OW-1-9D	Depth 88.5	scfh 30	psi 28
	Depth	scfh			Depth				Depth	scfh	
OW-1-1	Depth 95.5	sefh 30	30	OW-1-5S	Depth 67.3	30	20	OW-1-9D	Depth 88.5	scfh 30	28
OW-1-1 OW-1-2	95.5 96.5	30 35	30	OW-1-5S OW-1-6S	67.3 67.0	30 25	20	OW-1-9D OW-1-10D	88.5 87.2	30 40	28
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	30 35 35	30 32 33	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	30 25 25	20	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1	sefh 30 40 30	28 28 32
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	sefh 30 35 35 30	30 32 33 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	30 25 25 25	20 19 18 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	30 40 30 50	28 28 32 30
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0	sefh 30 35 35 30 40	30 32 33 30 28	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.0 66.9 66.0	30 25 25 25 25 30	20 19 18 18 20	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D		seft 30 40 30 50	28 28 32 30 29
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	sefh 30 35 35 30 40 50	30 32 33 30 28 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0 54.6	30 25 25 25 25 30 30	20 19 18 18 20	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	Depth	scft 30 40 30 50 55 45	28 28 32 30 29 31

SYSTEM #1

scfh psi 30 15 20 17 20 17 30 25 30 24 30 15 30 15 30 14	OW-1-17D OW-1-18D OW-1-19D OW-1-20D OW-1-21D OW-1-22D OW-1-23D OW-1-24D	Injection System #1 Injection Bank 5 Depth 79.5 78.3 78.9 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5 78.7 78.2 78.2	30 30 40 35 35 45 40	28 29 29 29 29 27	OW-1-21S OW-1-22S OW-1-23S OW-1-24S OW-1-25S OW-1-26SR	Injecti Depth 49.3 49.3 48.8 48.4 48.8 48.3	30 25 30 35 40	11 12 12 12 12 15
30 15 20 17 20 17 30 25 30 24 30 15 30 15 30 14 re adjusted to the target flo	OW-1-17D OW-1-18D OW-1-19D OW-1-20D OW-1-21D OW-1-22D OW-1-23D OW-1-24D	79.5 78.3 78.9 79.5 79.5 79.5	30 30 40 35 35 45	15 28 29 29 29 29	OW-1-21S OW-1-22S OW-1-23S OW-1-24S OW-1-25S	49.3 49.3 48.8 48.4 48.8	30 25 30 35 30	11 12 12 12
20 17 20 17 30 25 30 24 30 15 30 15 30 14 re adjusted to the target flo	OW-1-18D OW-1-19D OW-1-20D OW-1-21D OW-1-22D OW-1-23D OW-1-24D	78.3 78.9 79.5 79.5 79.5	30 40 35 35 45	28 29 29 29 29	OW-1-22S OW-1-23S OW-1-24S OW-1-25S	49.3 48.8 48.4 48.8	25 30 35 30	12 12 12
20 17 30 25 30 24 30 15 30 15 30 14 re adjusted to the target flo	OW-1-19D OW-1-20D OW-1-21D OW-1-22D OW-1-23D OW-1-24D	78.9 79.5 79.5 79.5 78.7	40 35 35 45	29 29 29 29	OW-1-23S OW-1-24S OW-1-25S	48.8	30 35 30	12
30 25 30 24 30 15 30 15 30 14 re adjusted to the target flo	OW-1-20D OW-1-21D OW-1-22D OW-1-23D OW-1-24D	79.5 79.5 79.5 78.7	35 35 45	29 29 29	OW-1-24S OW-1-25S	48.4	35	12
30 24 30 15 30 15 30 14 re adjusted to the target flo	OW-1-21D OW-1-22D OW-1-23D OW-1-24D	79.5 79.5 78.7	35	29	OW-1-25S	48.8	30	12
30 15 30 15 30 14 re adjusted to the target flo	OW-1-22D OW-1-23D OW-1-24D	79.5	45	29				
30 15 30 14 re adjusted to the target flo	OW-1-23D OW-1-24D	78.7			OW-1-26SR	48.3	40	15
30 14 re adjusted to the target flo	OW-1-24D		40	27			-	1.3
re adjusted to the target flo		78.2			OW-1-27S	48.3	30	14
			30	26	OW-1-28S	48.3	30	13
						Injecti	on Bank 9	
sefh psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
40 27	OW-1-29S	48.5	30	13	OW-1-33D	83.2	30	30
40 29	OW-1-30S	48.8	35	13	OW-1-34D	84.5	35	30
30 29	OW-1-31S	49.3	35	13	OW-1-35D	85.0	45	30
30 29	OW-1-32S	49.3	40	13	OW-1-36D	85.0	40	31
30 28	OW-1-33S	49.7	30	13	OW-1-37D	84.0	30	30
T		50.1	30	13	OW-1-38D	82.0	30	35
30 37	OW-1-34S							<u> </u>
30 37 30 26	OW-1-34S OW-1-35S	50.3	30	13	OW-1-39D	78.0	30	30
	40 27 40 29 30 29 30 29	scfh psi ID 40 27 OW-1-29S 40 29 OW-1-30S 30 29 OW-1-31S 30 29 OW-1-32S	sefh psi ID Depth 40 27 OW-1-29S 48.5 40 29 OW-1-30S 48.8 30 29 OW-1-31S 49.3 30 29 OW-1-32S 49.3	Injection Bank 8 Seffs Psi ID Depth Seffs	Name	Secfh Psi ID Depth Secfh Psi ID	Injection Bank 8 Injection Bank 8 Injection Seefin psi ID Depth Seefin psi ID Depth	Name

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	on System #1						
Ir	njection Bank 1	0		I	njection Bank 11				Injecti	on Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	14	OW-1-41D	73.6	30	23	OW-1-43	67.4	30	19
OW-1-38S	50.6	40	15	OW-1-42D	71.0	25	24	OW-1-44	66.6	30	19
OW-1-39S	50.7	40	13	OW-1-45	65.7	20	19	OW-1-51R	60.6	30	18
OW-1-40S	51.1	30	13	OW-1-46	64.3	15	19	OW-1-52	59.3	30	18
OW-1-41S	51.5	30	14	OW-1-47	63.4	15	18	OW-1-53	60.0	30	17
OW-1-42S	51.3	30	14	OW-1-48	62.5	30	18	OW-1-54	60.0	30	16
				OW-1-49	61.5	30	17				
				OW-1-50	61.0	30	18				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

	O ₂ Injection System #1											
	Mor	nitoring Points	Log			Mo	nitoring Points I	og		Monitori	ng Points Log	
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	26.36	20.9	14.45	0.1	MP-1-5	26.18	17.1	24.19	0	MP-1-1D	15.00	13.27
MP-1-1S	26.44	39.7	11.11	0.1	MP-1-6	18.40	15.4	9.37	0	MP-1-2D	9.75	10.12
MP-1-2D	20.71	34.5	16.77	0.4	MP-1-7	21.64	20.3	33.39	0	MP-1-3D	12.29	9.97
MP-1-2S	20.93	39.0	12.27	0	MP-1-8	22.18	19.0	12.29	0	MP-1-4D	7.11	8.87
MP-1-3D	18.85	19.7	14.45	0								
MP-1-3S	18.70	30.2	21.12	0								
MP-1-4D	21.55	25.1	5.51	0.2								
MP-1-4S	21.61	36.0	7.01	0								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

Date: 9/23/2013
OPERATIONAL NOTES
GA5 Air Compressor
1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi 2) Oil Level with system unloaded Low (red) X Normal (green) 3) Oil added Yes X No High (orange)
5) Oil filter changed Yes No X 6) Air filter Changed Yes No X 7) Oil separator changed Yes No X 8) Terminal strips checked Yes X No
AS-80 O ₂ Generator
GENERAL SYSTEM NOTES
Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No No No
2) Abnormal conditions observed (e.g. vandalism)
3) Other major activities completed
4) Supplies needed
5) Visitors
Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions:
Found system in alarm for a low oil level in the compressor. Alarm condition was not sent out over the notification system. Investigated cable for notification system and found a bad connection on the outside of the trailer. Repaired bad connection in the cable on the remote notification system. Added oil to compressor and restarted system.
After departing the site on September 23rd, the system went into alarm and shutdown the compressor. We checked the system on September 24th and found a large amount of debris inside the oil filter from when the compressor fan motor broke. Drained the oil from the system and replaced the oil filter. Restarted system and left running. Shortly after departure on September 24th the system went into alarm again and shutdown the compressor. We check the system on September 25th and found a buildup of rust and silt in the cooling system. Took apart cooling system and flushed lines and coils. Cleaned all filters and added oil to the proper levels. Restarted system and left running.
DO Meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 98 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100 ppm.
Electric Meter # 96-934-323 tied into Pole #4
Action Items:

SYSTEM #2

Ti: Wea Outdoor T Inside Trailer	ate: me: ather: emperature: Temperature: med By:	12 R ~8 ~6	/2013 2:35 ain 5° F 5° F e Ryan	- - - -							
	O ₂ Gen	ierator (Aii	rSep)				Com	pressor (Kaesa	r Rotary	Screw)	
Hours			18,695	-	Compressor	Tank *			105		(psi)
Feed Air Press	ure *		70	(psi)			(reading	s below are mad	le from co	ontrol panel)	
					Delivery Ai				102		(psi)
Cycle Pressure	*		60	(psi)	Element Ou	tlet Temper	rature		174		(°F)
Oxygen Receiv	ver Pressure *			120	Running Ho	ours			18,922		(hours)
78				(psi)	Loading Ho				18,438		(hours)
Oxygen Purity * maximum readin	ng during loading cy	cle	96.7	_(percent)	* maximum reading during loading cycle						
					* maximum reading during loading cycle O ₂ Injection System #2						
	T 1 D				7 1 11 B	1.0				1 / D 1 /	,
ID	Injection Ba		nsi	ID	Injection Ba			ID		njection Bank (
ID OW-2-2	Injection Ba Depth 90.2'	scfh 30	psi 32	ID OW-2-9S	Injection Ba Depth 75'	nk B scfh 40	psi 20	ID OW-2-10D	Depth 97.2'	scfh 30	seft 30
	Depth	scfh			Depth	scfh	psi		Depth	scfh	scfh
OW-2-2	90.2'	scfh 30	32	OW-2-9S	Depth 75'	scfh 40	psi 20	OW-2-10D	Depth 97.2'	scfh 30	sefh 30
OW-2-2 OW-2-3	90.2' 94.3'	30 40	32	OW-2-9S OW-2-10S	75'	40 40	20 29	OW-2-10D	97.2' 100.8'	30 30	seft 30 31
OW-2-2 OW-2-3 OW-2-4	90.2' 94.3' 94.7'	30 40 20	32 25 34	OW-2-98 OW-2-108 OW-2-118	75' 76.5'	40 40 45	20 29 21	OW-2-10D OW-2-11D OW-2-12	97.2' 100.8' 94'	30 30 30 35	scft 30 31 22
OW-2-2 OW-2-3 OW-2-4 OW-2-5	90.2' 94.3' 94.7' 95.3'	30 40 20 25	32 25 34 30	OW-2-98 OW-2-108 OW-2-118 OW-2-138	75' 75' 76.5' 75'	40 40 40 45 30	20 29 21 20	OW-2-10D OW-2-11D OW-2-12 OW-2-13D	97.2' 100.8' 94' 97'	30 30 30 35 30	sefh 30 31 22 30
OW-2-2 OW-2-3 OW-2-4 OW-2-5	90.2' 94.3' 94.7' 95.3'	scfh 30 40 20 25 20	32 25 34 30 31	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S	75' 75' 76.5' 75' 75'	40 40 40 45 30 30	20 29 21 20 19	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14	97.2' 100.8' 94' 97' 96.4'	30 30 30 35 30 30	sefh 30 31 22 30 29
OW-2-2 OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7	90.2' 94.3' 94.7' 95.3' 95.7'	scfh 30 40 20 25 20 30	32 25 34 30 31 30	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S	75' 75' 76.5' 75' 75.5'	sefh 40 40 45 30 30 30	20 29 21 20 19 20	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D	97.2' 100.8' 94' 97' 96.4' 94.6'	30 30 30 35 30 30 30	sefh 30 31 22 30 29 30

SYSTEM #2

								Date:		7/1	1/2013	
					O ₂ Injection	n System #2	2					
	Injection Ba	ınk D			Injection Ba	nk E			I	njection Bank	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	30	31	OW-2-22S	76'	30	21	OW-2-26D	95'	35	3	4
OW-2-19	96.1'	25	30	OW-2-24S	77.8'	30	29	OW-2-27	93.5'	30	3	1
OW-2-20D	96.6'	35	31	OW-2-26S	74'	30	21	OW-2-28D	92.1'	35	2	9
OW-2-21	96.6'	45	28	OW-2-28S	76'	30	21	OW-2-29	92.2'	30	2	8
OW-2-22D	96.3'	40	28	OW-2-30S	67.8'	30	19	OW-2-30D	88'	30	2	7
OW-2-23	97.2'	30	31	OW-2-34	71'	30	18	OW-2-31	86'	30	3	0
OW-2-24D	97'	30	31	OW-2-35	69.2'	35	21	OW-2-32	84'	30	3	5
OW-2-25	96'	30	30	OW-2-36	64.8'	35	20	OW-2-33	82'	30	3	2
Comments:				jection banks D & I				s no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared
	Injection Ba	ınk G			Injection Ba	nk H			Mon	nitoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	20	MP-2-1	27.82	22.4	21.71	0
OW-2-38	62.1'	30	21	OW-2-46	61'	30	20	MP-2-2	29.15	19.9	37.41	0
OW-2-39	60'	40	20	OW-2-47	60.5'	30	19	MP-2-3S	29.05	19.5	47.52	0
OW-2-40	61.7'	40	21	ID	DO (mg/L) Middle	DO (n To		MP-2-3D	29.16	38.9	40.11	0.5
OW-2-41	61.7'	30	21	MP-2-2	30.12	33.	51	MP-2-4	17.76	24.6	20.69	0.2
OW-2-42	61.6'	30	20	MP-2-3S	47.98	49.	61	MP-2-5	15.93	21.2	20.44	0
OW-2-43	61.4'	30	20	MP-2-3D	37.17	35.	14					
OW-2-44R	60.6'	30	20	MP-2-5	22.62	27.	37					
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	nat the pressur	e reading wa	s no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

		Date:	7/11/2013
	OPERATIONAL NOT	TES	
GA5 Air Compressor	O'LIGITIONIE NOT	E6	
Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure Oil Level with system unloaded	e is less than 9 psi	Yes X No_	
Low (red)	Normal (green)	X High (orange)	
3) Oil added	Yes	No X	
4) Oil changed	Yes	No X	
5) Oil filter changed	Yes	No X	
6) Air filter Changed	Yes	No X	
Oil separator cleaned Terminal strips checked	Yes X	No X No	
8) Terminai surps eneckeu	ies A	110	
AS-80 O ₂ Generator			
Prefilter changed	Yes	No X	
2) Coalescing changed	Yes	No X	
	GENERAL SYSTEM NO	OTES	
	<u>GEO.</u>	7110	
<u>Trailer</u>			
Performed general housekeeping (i.e. sweep, college)			
	Yes X	No	
Abnormal conditions observed (e.g. vandalism)			
2) Automat Conditions observed (c.g. vandatism)	-		
Other major activities completed			
4) Supplies needed			
- Supplies needed			
-			
5) Visitors			
	** *		
Record routine activities such as any alarm/shutdowns, samp transported off-site, oil/filter/gasket and/or any other abnorn		al	
transported on-site, on/inter/gasket and/or any other abnorn	nai operating continuous.		
Soaked up small amount of oil and water from separator unit for	disposal. Repaired leak at fl	low meter #16D. Wiped down all equ	uipment and cleaned up all
garbage, leaves and weeds from around fence areas.			
The threads on the bolt holes of monitoring points MP-2-1, MP-2	2-3D and MP-2-3S manholes	s can no longer be serviced and need	to be replaced.
DO Meter was calibrated to 100% oxygen saturation. PID was c with fresh air and was reading 0.0 ppm. Calibrated with 100 ppr		• •	s reading 96 ppm. Zeroed unit
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	ate: me: ather: emperature: Temperature: med By:	11 Ligh ~8 ~7	/2013 ::45 t Rain 0° F 0° F								
	O ₂ Gen	erator (Ai	rSep)				Com	<mark>pressor (Kaesa</mark>	r Rotary	Screw)	
Hours			18,836		Compressor	Tank *			105		(psi)
Feed Air Press	ure *		90	(psi)			(readings	s below are mad	le from co	ntrol panel)	
C I D	ψ.		65	<i>(</i> :)	Delivery Air				120		(psi)
Cycle Pressure	, *		65	(psi)	Element Ou	tiet Temper	ature		171		(°F)
Oxygen Receiv	ver Pressure *			115	Running Ho				19,067		(hours)
				(psi)	Loading Ho	urs			18,580		(hours)
Oxygen Purity * maximum readin	g during loading cy	cle	93.2	(percent)	* maximum reading during loading cycle						
	T · · · · D				O ₂ Injection		2			D 1.6	7
ID	Injection Ba Depth	nk A scfh	psi	ID	Injection Ba Depth	sefh	psi	ID	Depth	jection Bank (scfh	scfh
OW-2-2	90.2'	35	32	OW-2-9S	75'	40	21	OW-2-10D	97.2'	45	31
OW-2-3	94.3'	30	26	OW-2-10S	75'	30	30	OW-2-11D	100.8'	50	30
OW-2-4	94.7'	30	34	OW-2-11S	76.5'	30	22	OW-2-12	94'	50	22
OW-2-5	95.3'	45	30	OW-2-13S	75'	30	20	OW-2-13D	97'	30	30
OW-2-5 OW-2-6	95.3' 95.7'	45	30	OW-2-13S OW-2-15S	75' 75'	30	20	OW-2-13D OW-2-14	97' 96.4'	30 25	29
OW-2-6	95.7'	40	31	OW-2-15S	75'	30	19	OW-2-14	96.4'	25	29
OW-2-6 OW-2-7	95.7' 96'	40	31	OW-2-15S OW-2-16S	75' 75.5'	30	19	OW-2-14 OW-2-15D	96.4'	25	29

SYSTEM #2

Date:												
O ₂ Injection System #2												
	Injection Ba	ank D			Injection Ba	nk E			I	njection Bank	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	30	32	OW-2-22S	76'	40	20	OW-2-26D	95'	30	3	5
OW-2-19	96.1'	30	30	OW-2-24S	77.8'	30	27	OW-2-27	93.5'	30	2	9
OW-2-20D	96.6'	30	31	OW-2-26S	74'	30	20	OW-2-28D	92.1'	30	2	9
OW-2-21	96.6'	30	29	OW-2-28S	76'	30	21	OW-2-29	92.2'	40	2	9
OW-2-22D	96.3'	30	28	OW-2-30S	67.8'	35	17	OW-2-30D	88'	30	2	7
OW-2-23	97.2'	30	30	OW-2-34	71'	35	20	OW-2-31	86'	30	3	0
OW-2-24D	97'	30	29	OW-2-35	69.2'	35	20	OW-2-32	84'	30	3	6
OW-2-25	96'	30	29	OW-2-36	64.8'	40	19	OW-2-33	82'	30	3	2
Comments:				jection banks D & F				s no greater than th	e pressures [provided in the	nydrostatic taol	es prepared
	Injection Ba	ank G			Injection Ba	nk H			Mor	nitoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	22	MP-2-1	28.11	23.6	17.71	0
OW-2-38	62.1'	35	20	OW-2-46	61'	25	20	MP-2-2	29.47	20.2	26.83	0
OW-2-39	60'	45	19	OW-2-47	60.5'	30	20	MP-2-3S	29.36	26.6	45.41	0
OW-2-40	61.7'	35	20	ID	DO (mg/L) Middle	DO (n		MP-2-3D	29.48	40.0	37.88	0.4
OW-2-41	61.7'	30	20	MP-2-2	25.19	20.	11	MP-2-4	18.06	23.3	13.54	0.3
OW-2-42	61.6'	30	20	MP-2-3S	46.25	41.	99	MP-2-5	16.22	22.5	17.44	0
OW-2-43	61.4'	30	20	MP-2-3D	35.13	34.	00					
OW-2-44R	60.6'	30	20	MP-2-5	15.49	16.	12					
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	nat the pressur	e reading wa	s no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

		Date:	7/25/2013
	OPERATIONAL NOTE	ES	
GA5 Air Compressor	OI EIGHTOME TO I	20	
Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure Oil Level with system unloaded	e is less than 9 psi	Yes X No	
Low (red)	Normal (green)	X High (orange)	
3) Oil added	Yes	No X	
4) Oil changed	Yes	No X	
5) Oil filter changed	Yes	No X	
6) Air filter Changed	Y es	No X	
Oil separator cleaned Terminal strips checked	Yes Yes X	No X No	
o) Terminai surps checked	res A	110	
AS-80 O ₂ Generator			
1) Prefilter changed	Yes	No X	
2) Coalescing changed	Yes	No X	
	GENERAL SYSTEM NO	TES	
	<u> </u>	- 10	
<u>Trailer</u>			
1) Performed general housekeeping (i.e. sweep, colle		No	
	Yes X	No	
Abnormal conditions observed (e.g. vandalism)			
2) Honorina conditions observed (e.g. randamoni)			
Other major activities completed			
4) Supplies needed			
	-		
5) Visitors			
DIuting activities such as any alarm/shutdowns same	-li maintananaa matarial		
Record routine activities such as any alarm/shutdowns, samp transported off-site, oil/filter/gasket and/or any other abnorn	_	<u>l</u>	
uransported off-site, on/inter/gasket and/or any other abnorm	nai operating continuons.		
Soaked up small amount of oil and water from separator unit for		uipment and cleaned up all garbage	, leaves and weeds from around
fence areas. During monitoring found a trace amount of product	floating on MP-2-4.		
To d. 1 d h-14 h-1f monitoring points MD 2.1 MD 2	2 2D 1 MD 2 2C monholos	- 1 1 rowwined and need	. 111
The threads on the bolt holes of monitoring points MP-2-1, MP-2	2-3D and MP-2-3S mannoies	can no longer be serviced and need	to be replaced.
DO Meter probe tip was replaced and was calibrated to 100% ox reading 95 ppm. Zeroed unit with fresh air and was reading 0.0 p			
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	nte: me: tther: emperature: Temperature: ned By:	0 Clo ~7 ~8	/2013 :44 budy '9° F 2° F								
	O ₂ Gen	erator (Ai	rSep)				Com	<mark>pressor (Kaesa</mark>	r Rotary	Screw)	
Hours			19,014		Compressor	Tank *			110		(psi)
Feed Air Press	ure *		100	(psi)			(readings	s below are mad	e from co	ntrol panel)	
G 1 B	ate.		60	<i>(</i> .)	Delivery Air				113		(psi)
Cycle Pressure	*		60	(psi)	Element Ou	tlet Temper	ature		145		(°F)
Oxygen Receiv	er Pressure *			102	Running Ho				19,250		(hours)
				(psi)	Loading Ho	urs			18,760		(hours)
Oxygen Purity * maximum readin	g during loading cy	cle	96.5	(percent)	* maximum reading during loading cycle						
	Injection Ba				O ₂ Injection		2			ijection Bank (
ID	Depth	scfh	psi	ID	Injection Ba Depth	scfh	psi	ID	Depth	scfh	scfh
OW-2-2	90.2'	30	32	OW-2-9S	75'	35					
						33	22				31
OW-2-3	94.3'	35	26	OW-2-10S	75'	35	30	OW-2-10D OW-2-11D	100.8'	30	31
OW-2-3 OW-2-4	94.3' 94.7'	35	26 34	OW-2-10S	75' 76.5'						
						35	30	OW-2-11D	100.8'	30	31
OW-2-4	94.7'	30	34	OW-2-11S	76.5'	35	30	OW-2-11D	100.8'	30	31
OW-2-4 OW-2-5	94.7'	30	34	OW-2-11S	76.5' 75'	35 35 30	30 22 20	OW-2-11D OW-2-12 OW-2-13D	94'	30 35 30	31 22 30
OW-2-4 OW-2-5 OW-2-6	94.7' 95.3' 95.7'	30 30 40	34 29 31	OW-2-11S OW-2-13S OW-2-15S	76.5' 75'	35 35 30 30	30 22 20 18	OW-2-11D OW-2-12 OW-2-13D OW-2-14	94' 97' 96.4'	30 35 30 45	31 22 30 30
OW-2-4 OW-2-5 OW-2-6 OW-2-7	94.7' 95.3' 95.7' 96'	30 30 40 30	34 29 31 30	OW-2-11S OW-2-13S OW-2-15S OW-2-16S	76.5' 75' 75' 75.5'	35 35 30 30 30	30 22 20 18 20	OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D	94' 97' 96.4' 94.6'	30 35 30 45 30	31 22 30 30 30

SYSTEM #2

Date:												
O ₂ Injection System #2												
	Injection Ba	ınk D			Injection Ba				I	njection Bank l	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	30	31	OW-2-22S	76'	30	21	OW-2-26D	95'	30	3	5
OW-2-19	96.1'	30	30	OW-2-24S	77.8'	30	27	OW-2-27	93.5'	30	2	9
OW-2-20D	96.6'	45	30	OW-2-26S	74'	30	21	OW-2-28D	92.1'	45	2	9
OW-2-21	96.6'	45	29	OW-2-28S	76'	30	21	OW-2-29	92.2'	55	2	9
OW-2-22D	96.3'	40	28	OW-2-30S	67.8'	30	17	OW-2-30D	88'	55	2	8
OW-2-23	97.2'	30	30	OW-2-34	71'	35	20	OW-2-31	86'	50	3	1
OW-2-24D	97'	30	29	OW-2-35	69.2'	30	21	OW-2-32	84'	30	3	6
OW-2-25	96'	30	30	OW-2-36	64.8'	30	20	OW-2-33	82'	35	3	2
	Injection Ba	ınk G			O ₂ Injection Injection Ba		2		Mon	nitoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	21	MP-2-1	28.26	22.8	21.91	0
OW-2-38	62.1'	20	20	OW-2-46	61'	30	20	MP-2-2	29.62	19.2	41.11	0.1
OW-2-39	60'	30	20	OW-2-47	60.5'	30	20	MP-2-3S	29.48	23.1	47.17	0.2
OW-2-40	61.7'	30	20	ID	DO (mg/L) Middle	DO (n To		MP-2-3D	29.59	40.0	39.81	0.5
OW-2-41	61.7'	40	20	MP-2-2	36.29	27.	61	MP-2-4	18.20	23.7	17.81	0.2
OW-2-42	61.6'	30	21	MP-2-3S	50.05	48.	88	MP-2-5	16.35	20.9	25.83	0
OW-2-43	61.4'	35	20	MP-2-3D	40.07	39.	79					
OW-2-44R	60.6'	45	20	MP-2-5	21.70	20.	83					
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	at the pressur	e reading wa	s no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

		Date:	8/9/2013
	ODED ATION AL NO	PP.C.	
CAE Alii Communica	OPERATIONAL NOT	res	
GA5 Air Compressor 1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Press 2) Oil Level with system unloaded	-	Yes X No No	
3) Oil added 4) Oil changed 5) Oil filter changed 6) Air filter Changed 7) Oil separator cleaned 8) Terminal strips checked	X Normal (green) Yes X Yes Yes Yes Yes Yes Yes Yes Yes	High (orange)	
AS-80 O ₂ Generator			
Prefilter changed Coalescing changed	YesYes	No X No X	
	GENERAL SYSTEM NO	OTES	
Trailer 1) Performed general housekeeping (i.e. sweep, co	Yes X) No	
Abnormal conditions observed (e.g. vandalism			
Other major activities completed			
4) Supplies needed			
5) Visitors			
Record routine activities such as any alarm/shutdowns, sai transported off-site, oil/filter/gasket and/or any other abno-		al	
Soaked up small amount of oil and water from separator unit f which blew out of top of separator unit. Secured with zip ties buildup. Wiped down all equipment and cleaned up all garbag	and turned auto drain pressure	e down. Changed air filters on compresso	
The threads on the bolt holes of monitoring points MP-2-1, M	P-2-3D and MP-2-3S manhole	s can no longer be serviced and need to b	pe replaced.
DO Meter was calibrated to 100% oxygen saturation. PID was with fresh air and was reading 0.0 ppm. Calibrated with 100 p	**	* *	eading 97 ppm. Zeroed unit
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	nte: me: tther: emperature: Temperature: ned By:	14 R ~8 ~7	2/2013 4:20 ain -0° F 4° F e Ryan	- - - -							
	O ₂ Gen	erator (Ai	rSep)				Com	pressor (Kaesa	<mark>r Rotary</mark>	Screw)	
Hours			19,169	-	Compressor	Tank *			120		(psi)
Feed Air Press	ure *		100	(psi)			(readings	s below are mad	le from co	ntrol panel)	
C I D	ሁ		60	()	Delivery Air				115		(psi)
Cycle Pressure	*		60	(psi)	Element Ou	tlet Tempei	rature		165		(°F)
Oxygen Receiv	er Pressure *			120	Running Ho				19,408		(hours)
				(psi)	Loading Ho	urs			18,915		(hours)
Oxygen Purity * maximum readin	g during loading cy	cle	97.8	(percent)	* maximum reading during loading cycle						
	Injection Ba	nk A			O ₂ Injection Injection Ba		2		Ir	ijection Bank (Υ
ID	Depth Depth	scfh	psi	ID	Depth Depth	scfh	psi	ID	Depth	scfh	scfh
OW-2-2	90.2'	30	32	OW-2-9S	75'	30	22	OW-2-10D	97.2'	30	30
OW-2-3	94.3'	40	26	OW-2-10S	75'	30	30	OW-2-11D	100.8'	30	31
OW-2-4	94.7'	30	34	OW-2-11S	76.5'	30	23	OW-2-12	94'	30	22
OW-2-5	95.3'	25	28	OW-2-13S	75'	30	21	OW-2-13D	97'	30	31
OW-2-6	95.7'	20	32	OW-2-15S	75'	30	18	OW-2-14	96.4'	30	30
OW-2-7	96'	25	30	OW-2-16S	75.5'	40	20	OW-2-15D	94.6'	30	30
OW-2-8	96.3'	30	31	OW-2-18S	74.5'	30	20	OW-2-16D	94.1'	30	31
OW-2-9D	96.7'	30	30	OW-2-20S	79'	30	23	OW-2-17	95'	30	30
Comments:	All injection point by URS Corporation			get flow rate of ~30	scfh provided th	at the pressure	e reading wa	s no greater than the	e pressures p	provided in the	hydrostatic tables prepared

SYSTEM #2

Date:												
O ₂ Injection System #2												
	Injection Ba	ınk D			Injection Ba	nk E			Iı	njection Bank l	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	45	31	OW-2-22S	76'	30	22	OW-2-26D	95'	30	3	5
OW-2-19	96.1'	35	31	OW-2-24S	77.8'	20	27	OW-2-27	93.5'	30	2	9
OW-2-20D	96.6'	30	30	OW-2-26S	74'	10	21	OW-2-28D	92.1'	30	2	9
OW-2-21	96.6'	30	30	OW-2-28S	76'	15	21	OW-2-29	92.2'	30	3	0
OW-2-22D	96.3'	30	28	OW-2-30S	67.8'	20	17	OW-2-30D	88'	30	3	0
OW-2-23	97.2'	35	30	OW-2-34	71'	30	20	OW-2-31	86'	30	3	0
OW-2-24D	97'	30	30	OW-2-35	69.2'	25	21	OW-2-32	84'	30	3	6
OW-2-25	96'	30	30	OW-2-36	64.8'	25	21	OW-2-33	82'	30	3	2
Comments:				et flow rate of ~30 jection banks D & F		•		s no greater than th	e pressures j	provided in the	hydrostatic tabl	es prepared
	Injection Ba	ınk G			Injection Ba	nk H			Mon	itoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	21	MP-2-1	28.51	22.6	24.39	0.4
OW-2-38	62.1'	30	20	OW-2-46	61'	25	20	MP-2-2	29.86	19.6	40.07	0.4
OW-2-39	60'	40	20	OW-2-47	60.5'	25	20	MP-2-3S	29.72	24.6	45.59	0.5
OW-2-40	61.7'	30	21	ID	DO (mg/L) Middle	DO (n To		MP-2-3D	29.87	39.7	41.12	0
OW-2-41	61.7'	35	20	MP-2-2	38.11	35.	00	MP-2-4	18.45	21.7	16.77	0.3
OW-2-42	61.6'	40	21	MP-2-3S	46.77	44.	01	MP-2-5	16.61	20.9	23.84	0
OW-2-43	61.4'	30	20	MP-2-3D	38.81	35.	14					
OW-2-44R	60.6'	30	20	MP-2-5	21.19	18.	88					
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	at the pressure	e reading wa	s no greater than th	e pressures j	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

		Date:	8/22/2013
	CONTRACTION A NOTICE		
016.11.0	OPERATIONAL NOTES		
GA5 Air Compressor 1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is 2) Oil Level with system unloaded Low (red) X	-	Yes X No	
3) Oil added Y 4) Oil changed Y 5) Oil filter changed Y 6) Air filter Changed Y	Yes X Yes Yes Yes Yes Yes Yes X	No	
AS-80 O ₂ Generator 1) Prefilter changed Y	YesYes	No X No X	
Coalescing changed Y	Yes	No X	
	GENERAL SYSTEM NOTES	<u> </u>	
<u>Trailer</u> 1) Performed general housekeeping (i.e. sweep, collect Y	t trash inside and out, etc.) Yes X	No	
Abnormal conditions observed (e.g. vandalism)			
Other major activities completed			
4) Supplies needed			
5) Visitors			
Record routine activities such as any alarm/shutdowns, samplir transported off-site, oil/filter/gasket and/or any other abnormal			
Soaked up small amount of oil and water from separator unit for dis down all equipment and cleaned up all garbage, leaves and weeds for		oil to compressor. Replaced 60 watt	t light bulb in shed. Wiped
The threads on the bolt holes of monitoring points MP-2-1, MP-2-3	3D and MP-2-3S manholes can	no longer be serviced and need to be	replaced.
DO Meter was calibrated to 100% oxygen saturation. PID was check with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm i			ding 98 ppm. Zeroed unit
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	nte: me: tther: emperature: Temperature: ned By:	11 Su ~7 ~6	/2013 ::48 unny 8° F 8° F 2 Ryan								
	O ₂ Gen	erator (Ai	rSep)				Com	pressor (Kaesa	<mark>r Rotary</mark>	Screw)	
Hours			19,333		Compressor	Tank *			105		(psi)
Feed Air Press	ure *		100	(psi)			(readings	s below are mad	le from co	ntrol panel)	
Cycle Pressure	*		60	(psi)	Delivery Air Element Ou		rature		109 156		(psi) (°F)
Oxygen Receiv	ver Pressure *			120 (psi)	Running Hours 19,577 Loading Hours 19,080				(hours) (hours)		
Oxygen Purity * maximum readin	g during loading cy	cle	94.9	(percent)		iding during lo					
	* * · · · *				O ₂ Injection		2				,
ID	Injection Ba Depth	scfh	psi	ID	Injection Ba Depth	sefh	psi	ID	Depth	ijection Bank (scfh	scfh
OW-2-2	90.2'	30	32	OW-2-9S	75'	30	22	OW-2-10D	97.2'	15	30
OW-2-3	94.3'	30	25	OW-2-10S	75'	30	29	OW-2-11D	100.8'	15	32
OW-2-4	94.7'	30	33	OW-2-11S	76.5'	30	24	OW-2-12	94'	30	23
OW-2-5	95.3'	40	28	OW-2-13S	75'	35	22	OW-2-13D	97'	35	31
OW-2-6	95.7'	45	32	OW-2-15S	75'	30	19	OW-2-14	96.4'	25	30
OW-2-7	96'	45	30	OW-2-16S	75.5'	25	20	OW-2-15D	94.6'	30	30
OW-2-8	96.3'	30	33	OW-2-18S	74.5'	30	20	OW-2-16D	94.1'	30	32
OW-2-9D	96.7'	30	31	OW-2-20S	79'	30	22	OW-2-17	95'	30	30
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	at the pressure	e reading wa	s no greater than th	e pressures p	provided in the	hydrostatic tables prepared

SYSTEM #2

Date: 9/5/2013												
					O ₂ Injection	1 System #	2					
	Injection Ba	ank D			Injection Ba	<u> </u>			I	njection Bank	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	30	31	OW-2-22S	76'	30	22	OW-2-26D	95'	45	3	6
OW-2-19	96.1'	30	32	OW-2-24S	77.8'	30	28	OW-2-27	93.5'	40	2	9
OW-2-20D	96.6'	35	31	OW-2-26S	74'	30	22	OW-2-28D	92.1'	50	2	9
OW-2-21	96.6'	45	32	OW-2-28S	76'	30	21	OW-2-29	92.2'	55	3	1
OW-2-22D	96.3'	40	29	OW-2-30S	67.8'	30	18	OW-2-30D	88'	40	3	0
OW-2-23	97.2'	30	30	OW-2-34	71'	30	20	OW-2-31	86'	30	3	0
OW-2-24D	97'	30	30	OW-2-35	69.2'	30	21	OW-2-32	84'	30	3	5
OW-2-25	96'	20	30	OW-2-36	64.8'	30	21	OW-2-33	82'	30	3	2
Comments:				get flow rate of ~30 jection banks D & I				is no greater than th	e pressures	provided in the	nyurostutie tuoi	es prepared
	Injection Ba	ank G			Injection Ba	nk H			Mor	nitoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	21	MP-2-1	28.87	21.9	21.33	0.3
OW-2-38	62.1'	30	20	OW-2-46	61'	20	20	MP-2-2	30.23	19.6	43.27	0.5
OW-2-39	60'	35	20	OW-2-47	60.5'	30	21	MP-2-3S	30.13	25.1	46.44	0.5
OW-2-40	61.7'	35	21	ID	DO (mg/L) Middle	DO (n		MP-2-3D	30.25	38.4	34.99	0
OW-2-41	61.7'	35	20	MP-2-2	30.13	29.	99	MP-2-4	18.86	22.4	17.63	0.4
OW-2-42	61.6'	35	21	MP-2-3S	41.12	37.	74	MP-2-5	17.02	20.9	38.17	0.1
OW-2-43	61.4'	30	21	MP-2-3D	31.48	30.	99					
OW-2-44R	60.6'	30	21	MP-2-5	21.11	16.	68					
Comments:	All injection point by URS Corporati			get flow rate of ~30	scfh provided th	at the pressur	e reading wa	s no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

					Date:	9/5/2013
			OPEDATIONAL N	OTTEC		
CAE Ain Com			OPERATIONAL N	OTES		
) Oil Level Checked with syster* Unload system, wait until D) Oil Level with system unloade	Delivery Air Pressure	e is less than 9 psi Normal (green)	YesX Higl	X No	
4) 5) 6) 7)	 Oil added Oil changed Oil filter changed Air filter Changed Oil separator cleaned Terminal strips checked 		Yes Yes Yes Yes X		No X	· · · ·
	nerator) Prefilter changed) Coalescing changed		YesYes	NOTES	No X No X	
			GENERAL STOTEM	HOLES		
) Performed general housekeepi) Abnormal conditions observed		ect trash inside and out, et Yes X	tc.)	No	
	- <u></u>					
3)) Other major activities complete	eted				
4)) Supplies needed					
5)) Visitors					3
	ne activities such as any alarn off-site, oil/filter/gasket and/or					
						pected unit and found that the shaft nd weeds from around fence areas.
	r 6, 2013 replaced the bad press unit from shutting off at 120 psi		l left system running. Ch	ecked repair on M	onday, September 9,	2013 and made adjustment in
The threads or	n the bolt holes of monitoring p	ooints MP-2-1, MP-2	2-3D and MP-2-3S manho	oles can no longer	be serviced and need	I to be replaced.
	s calibrated to 100% oxygen sat and was reading 0.0 ppm. Cali				alibration and unit w	vas reading 98 ppm. Zeroed unit
Electric Meter	r # 96-929-544 tied into Pole #3	3				
Action Items:	:					

SYSTEM #2

Time: Weather: Outdoor Temperature: Inside Trailer Temperature:		10 Su ~7 ~6	/2013 ::55 nny 5° F 7° F								
	Compressor (Kaesar Rotary Screw)										
Hours19,538				Compressor Tank *						(psi)	
Feed Air Pressure * 70			70	(psi)	(readings below are made from control panel)					()	
Cycle Pressure *60			60	(psi)	Delivery Air Element Ou		ature		75 (psi) 171 (°F)		
Oxygen Receiver Pressure *				120 (psi)					19,787 19,287		
Oxygen Purity 97.7 * maximum reading during loading cycle				(percent) * maximum reading during loading cycle							
	T : D	1.4			O ₂ Injection System #2 Injection Bank B Injection Bank C						
ID	Injection Ba Depth	nk A scfh	psi	ID	Depth	scfh	psi	ID	Depth	ijection Bank (scfh
	Береп		par	110	Depth						
OW-2-2	90.2'	30	31	OW-2-9S	75'	30	22	OW-2-10D	97.2'	20	30
OW-2-2 OW-2-3	90.2'	30 30	31 25	OW-2-9S OW-2-10S	75' 75'						
						30	22	OW-2-10D	97.2'	20	30
OW-2-3	94.3'	30	25	OW-2-10S	75'	30	22	OW-2-10D OW-2-11D	97.2'	20 25	30 31
OW-2-3 OW-2-4	94.3'	30	25	OW-2-10S	75' 76.5'	30 30 30	22 30 23	OW-2-10D OW-2-11D OW-2-12	97.2' 100.8' 94'	20 25 35	30 31 23
OW-2-3 OW-2-4 OW-2-5	94.3' 94.7' 95.3'	30 35 45	25 33 28	OW-2-10S OW-2-11S OW-2-13S	75' 76.5'	30 30 30 30	22 30 23 22	OW-2-10D OW-2-11D OW-2-12 OW-2-13D	97.2' 100.8' 94' 97'	20 25 35 30	30 31 23 30
OW-2-3 OW-2-4 OW-2-5 OW-2-6	94.3' 94.7' 95.3' 95.7'	30 35 45 30	25 33 28 32	OW-2-10S OW-2-11S OW-2-13S OW-2-15S	75' 76.5' 75'	30 30 30 30 30 35	22 30 23 22 19	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14	97.2' 100.8' 94' 97' 96.4'	20 25 35 30 30	30 31 23 30 30
OW-2-3 OW-2-4 OW-2-5 OW-2-6 OW-2-7	94.3' 94.7' 95.3' 95.7'	30 35 45 30 30	25 33 28 32 31	OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S	75' 76.5' 75' 75.5'	30 30 30 30 30 35 35	22 30 23 22 19 20	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D	97.2' 100.8' 94' 97' 96.4' 94.6'	20 25 35 30 30 30	30 31 23 30 30 30

SYSTEM #2

Date: 9/20/2013												
O ₂ Injection System #2												
	Injection Ba	Injection Bank E				Injection Bank F						
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	30	31	OW-2-22S	76'	30	22	OW-2-26D	95'	50	3	4
OW-2-19	96.1'	40	31	OW-2-24S	77.8'	30	26	OW-2-27	93.5'	40	2	9
OW-2-20D	96.6'	40	31	OW-2-26S	74'	30	20	OW-2-28D	92.1'	30	2	8
OW-2-21	96.6'	30	30	OW-2-28S	76'	30	20	OW-2-29	92.2'	40	3	0
OW-2-22D	96.3'	30	28	OW-2-30S	67.8'	30	17	OW-2-30D	88'	45	3	0
OW-2-23	97.2'	30	30	OW-2-34	71'	40	20	OW-2-31	86'	30	3	1
OW-2-24D	97'	35	30	OW-2-35	69.2'	40	21	OW-2-32	84'	30	3	5
OW-2-25	96'	30	31	OW-2-36	64.8'	45	22	OW-2-33	82'	30	32	
All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection banks D & E are turned off. O ₂ Injection System #2												
	Injection Bank G Injection Bank H Monitoring Points Log											
ID	Depth	scfh	psi	ID	Depth	sefh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	35	20	MP-2-1	29.35	22.5	28.55	0.2
OW-2-38	62.1'	35	20	OW-2-46	61'	35	22	MP-2-2	30.66	19.4	46.86	0.2
OW-2-39	60'	45	21	OW-2-47	60.5'	35	20	MP-2-3S	30.56	25.1	42.55	0.5
OW-2-40	61.7'	45	21	ID	DO (mg/L) Middle	DO (n To		MP-2-3D	30.70	38.7	40.12	0
OW-2-41	61.7'	30	20	MP-2-2	40.12	37.	77	MP-2-4	19.29	20.9	17.88	0.2
OW-2-42	61.6'	30	21	MP-2-3S	33.13	30.	74	MP-2-5	17.47	20.9	46.81	0
OW-2-43	61.4'	30	20	MP-2-3D	19.19	26.	16					
OW-2-44R	60.6'	30	20	MP-2-5	21.12	11.	07					
All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings.												

SYSTEM #2

			Date:	9/20/2013					
		OPERATIONAL NOTE	g						
CAS Air Cor		OPERATIONAL NOTES	8						
	npressor Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pro Oil Level with system unloaded	essure is less than 9 psi	Yes X No No						
		X Normal (green)	High (orange)						
	3) Oil added	Yes X	No						
	4) Oil changed	Yes	No X						
	5) Oil filter changed	Yes	No X						
	6) Air filter Changed7) Oil separator cleaned	Yes	No X No X						
	7) Oil separator cleaned 3) Terminal strips checked	Yes X	No X No						
	of Terminal surps enecked	105 A	110						
AS-80 O ₂ Ge	nerator								
	1) Prefilter changed	Yes Yes	No X No X						
2	2) Coalescing changed	Yes	No <u>X</u>						
		GENERAL SYSTEM NOT	TES						
	1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No								
2	2) Abnormal conditions observed (e.g. vandalism)								
3	3) Other major activities completed								
4	1) Supplies needed								
5	5) Visitors								
	ine activities such as any alarm/shutdowns, off-site, oil/filter/gasket and/or any other al								
_	nall amount of oil and water from separator un eaves and weeds from around fence areas.	it for disposal. Added small amoun	t of oil to the compressor. Wiped do	own all equipment and cleaned up					
The threads o	on the bolt holes of monitoring points MP-2-1,	, MP-2-3D and MP-2-3S manholes c	an no longer be serviced and need to	o be replaced.					
	as calibrated to 100% oxygen saturation. PID $^{\circ}$ and was reading 0.0 ppm. Calibrated with 10			reading 98 ppm. Zeroed unit					
Electric Mete	er # 96-929-544 tied into Pole #3								
Action Items	s:								